Project: Location: Prepared For:	Spy Pond Lane Arlington, MA Frederick Russell	C NTECH ENGINEERED SOLUTIONS				
<u>Purpose:</u>	To calculate the water quality flow rate (WQF) over a given site area. In this s derived from the first 1/2" of runoff from the contributing impervious surface.	ituation the WQF is				
<u>Reference:</u>	Massachusetts Dept. of Environmental Protection Wetlands Program / United States Department of Agriculture Natural Resources Conservation Service TR-55 Manual					
Procedure:	Determine unit peak discharge using Figure 1 or 2. Figure 2 is in tabular form the tc, read the unit peak discharge (qu) from Figure 1 or Table in Figure 2. q following units: cfs/mi ² /watershed inches (csm/in).	so is preferred. Using u is expressed in the				
	Compute Q Rate using the following equation:					
	Q = (qu) (A) (WQV)					
	where:					

Q = flow rate associated with first 1/2" of runoff

qu = the unit peak discharge, in csm/in.

A = impervious surface drainage area (in square miles) WQV = water quality volume in watershed inches (1/2" in this case)

Structure Name	Impv. (acres)	A (miles ²)	t _c (min)	t _c (hr)	WQV (in)	qu (csm/in.)	Q (cfs)
VX	27.00	0.0421875	15.0	0.250	0.50	606.00	12.78