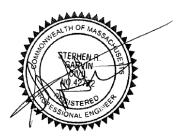
ARLINGTON HIGH SCHOOL 869 MASSACHUSETTS AVENUE Arlington, MA 02476

STORMWATER REPORT

Submitted to:

Town of Arlington Conservation Commission, Massachusetts Department of Environmental Protection

Applicant:


Town of Arlington 730 Massachusetts Avenue Arlington, MA 02476

Architect:

HMFH Architects, Inc. 130 Bishop Allen Dr. Cambridge, MA 02139

Landscape Architect: Crosby / Schlessinger / Smallridge LLC 67 Batterymarch St., 2nd Floor Boston, MA 02110

Civil Engineer/Land Surveyor: Samiotes Consultants, Inc. 20 A Street Framingham, MA 01701

ARLINGTON HIGH SCHOOL STORMWATER MANAGEMENT NARRATIVE ARLINGTON, MA

Introduction:

The existing site, located at 869 Massachusetts Avenue, Arlington, MA, consists of the Arlington High School campus, containing the existing Arlington High School Building with an associated paved driveways, landscaped areas, and utilities as well as grass athletic fields, a turf football field, and facilities. There are several accessory structures across the property for equipment storage and bathroom facilities for the fields. The property is abutted by the Minuteman Commuter Bikeway on the north side, a condominum complex, church, and pharmacy on the east side, and a series of residences and the Francis N. O'Hara building on the west side. The site slopes approximately 35 feet from south to north, with the high point of the site being at Massachusetts Ave. and the low point being on the east side of the site at the end of the Mill Brook culvert. Mill Brook flows through the site from west to east between the existing building and the football stadium via a subsurface concrete box culvert. which splits into two corrugated metal culverts on the east side of the existing building before daylighting on the east side of the site adjacent to Mill Street Extension.

The proposed project includes a new 143,025 square foot High School building footprint with associated new paved parking areas, landscaping, athletic fields, bathroom building, utilities and a new stormwater management system in accordance with the Massachusettss DEP Stormwater Standards. The existing football stadium will remain as is and is not within the scope of this project.

Existing Site Hydrology:

In the existing condition, site drainage is handled by a series of "daisy-chained" catch basins that capture stormwater flows and conveys it via underground stormwater piping to the Mill Brook culvert. There is also a large existing culvert, consisting of a 36" reinforced concrete pipe (RCP), that flows under the existing building and discharges to the Mill Brook culvert. This 36" culvert carries a large upgradient offsite watershed from South of the project site that measures over 4,500,000 sf (105+ Ac). See figure within the appendices of this report. Historically this culvert has been shown to be undersized and has caused flooding and floor buckling within the basement of the High School.

From a stormwater treatment perspective, there is an existing oil/water separator unit on the north side of the building, however this structure only treats a single catchment area of a much larger impervious area on-site. The field areas and football stadium have underdrainage system that ties into the Mill Brook culvert as well.

According to FEMA flood mapping, the site is located within Zones X and AE (see FEMA Firmette Map within the appendices of this report). These flood zones are depicted graphically on the civil design plans and existing conditions plans per the FEMA delineation. However, after a field survey of elevations present at the site, we have concluded that the flood elevations shown on the FEMA mapping are held within the banks of the Mill Brook and do not encroach on the site. During the last major renovation at the school, there was a small area on the east side of the school dedicated for compensatory storage.

Methodology/ Procedure

The proposed Stormwater Management system will include several stormwater Best Management Practices (BMPs) consisting of deep sump catch basins, water quality treatment units, an underground

Page 2 Arlington High School Stormwater Management Narrative 05/07/2020; Revised 5/28/20

infiltration system, and three (3) lined rain gardens used for filtration. See the Proposed Watersheds section within this report for detailed information about the proposed BMPs for each watershed included in the stormwater management design.

Watershed Routing

Below is a summary of the various existing and proposed watersheds with a brief narrative describing the routing. The watersheds are depicted in sketches Ex-HYD and P-HYD located in the appendices of this report. The hydrology maps show a single point of analysis (POA) in both the existing conditions and the proposed conditions. POA-1 represents the culmination point of stormwater flows across the site within Mill Brook on the east side of the site.

Existing Watersheds:

Ex- Watershed-1: This watershed consists of the existing high school building, fields, paved parking areas and landscaped areas across the site. Stormwater from this watershed sheet flows overland to existing catch basins across the site, which are conveyed via existing underground piping to the existing drainage systems on the north side of the site before discharging to Mill Brook, defined as POA-1.

Proposed Watersheds:

- P- Watershed-1: This watershed consists of paved parking areas, pedestrian walkways, and landscaped areas that sheet flow overland to the proposed deep sump catch basins, where it is then conveyed to a proposed water quality unit prior to discharging to the culertized portion of Mill Brook on the east side of the site, defined as Point of Analysis 1 (POA-1).
- P- Watershed-1A: This watershed consists of a portion of the paved parking area and landscaped area on the east side of the site. Stormwater sheet flows overland to proposed deep sump catch basins, where it is then conveyed to a proposed water quality unit prior to discharging to Mill Brook on the east side of the site, defined as Point of Analysis 1 (POA-1).
- P- Watershed-1B: This watershed consists of the northwest portion of the proposed building. Stormwater is collected and piped underground via roof drain piping to the culvertized portion of Mill Brook, defined as Point of Analysis 1 (POA-1).
- P- Watershed-1C: This watershed consists of pedestrian walkways, landscaped areas, and wooded areas on the east edge of the site. Stormwater sheet flows that do not discharge directly to Mill Brook flow overland to the abutting property where they eventually culminate at Mill Brook on the east side of the site, defined as Point of Analysis 1 (POA-1).
- P- Watershed-1D: This watershed consists of the southern portion of the proposed building. Stormwater is collected and piped underground via roof drain piping to an existing drain pipe that discharges to Mill Brook on the east side of the site, defined as Point of Analysis 1 (POA-1).
- P- Watershed-1E: This watershed consists of pedestrian walkways and landscaped areas that sheet flow overland to the proposed area drains, where it is then conveyed to the culertised portion of Mill Brook on the east side of the site via underground piping, defined as Point of Analysis 1 (POA-1).
- P- Watershed-2: This watershed consists of stormwater flows from the parking area, play area, and landscaped area on the east side of the site. Stormwater flows overland to proposed deep sump catch basins and is conveyed via underground pipe to a proposed underground infiltration system (UGS-1). In larger storm events, flows will discharge via an outlet control structure (OCS-1) and underground piping to an existing drain pipe that discharges to Mill Brook, defined as POA-1.

Page 3 Arlington High School Stormwater Management Narrative 05/07/2020; Revised 5/28/20

- P- Watershed-2B: This watershed consists of the eastern portion of the proposed building. Stormwater is collected and piped underground via roof drain piping to a proposed underground infiltration system (UGS-1). In larger storm events, flows will discharge via an outlet control structure (OCS-1) and underground piping to an existing drain pipe that discharges to Mill Brook, defined as POA-1.
- P- Watershed-3A: This watershed consists of paved parking areas, the Shouler Court paved roadway, pedestrian walkways, amphitheater area, and landscaped areas on the west side of the site that sheet flow overland to proposed deep sump catch basins. Stormwater flows are conveyed via underground piping to a proposed lined Rain Garden (RG-1). Stormwater passes through the soil media and the lined bioretention area channels the filtered stormwater through a perforated underdrain pipe at the bottom of the bioretention system that discharges to another proposed Rain Garden (RG-2), which also has an underdrain pipe collecting flow and discharging to the third Rain Garden (RG-3). This bioretention area has an underdrain and outlet control structure (OCS-2) discharging to the stormwater trunk line running along the north side of the proposed building. Flows from this trunk line are discharged to the culvertized portion of Mill Brook on the east side of the site, defined as Point of Analysis 1 (POA-1). Note that the proposed Rain Garden (RG-1) has an emergency spillway weir for larger storm events, which discharges to RG-2.
- P- Watershed-3B: This watershed consists of paved parking areas and landscaped areas, as well as flows from the upstream RG-1 (see P-Watershed-3A description) on the west side of the site that sheet flow overland to proposed deep sump catch basins. Stormwater flows are conveyed via underground piping to a proposed lined Rain Garden (RG-2). Stormwater passes through the soil media and the lined rain garden channels the filtered stormwater through a perforated underdrain pipe at the bottom of the rain garden that discharges to another proposed Rain Garden (RG-3), which also has an underdrain pipe and outlet control structure (OCS-2) discharging to the stormwater trunk line running along the north side of the proposed building. Flows from this trunk line are discharged to the culvertized portion of Mill Brook on the east side of the site, defined as Point of Analysis 1 (POA-1). Note that the proposed Rain Garden (RG-2) has an emergency spillway weir for larger storm events, which discharges to RG-3.
- P- Watershed-3C: This watershed consists of landscaped areas, as well as flows from the upstream RG-2 (see P-Watershed-3B description) on the west side of the site that sheet flow overland to proposed deep sump catch basins. Stormwater flows are conveyed via underground piping to a proposed lined Rain Garden (RG-3). Stormwater passes through the soil media and the lined rain garden channels the filtered stormwater through a perforated underdrain pipe at the bottom of the rain garden and is collected via an underdrain perforated pipe at the bottom of the rain garden that discharges to the stormwater trunk line running along the north side of the proposed building. Flows from this trunk line are discharged to the culvertized portion of Mill Brook on the east side of the site, defined as Point of Analysis 1 (POA-1). Note that the proposed Rain Garden (RG-3) has an outlet control structure associated with its design for larger storm events, which discharges to the outlet pipe and trunk line.
- P- Watershed-4: This watershed consists of pedestrian walkways and synthetic turf soccer field areas on the west side of the site that are collected via underdrain piping and area drains and passed through a series of small detention basins prior to discharging to the trunk line on the north side of the proposed building and ultimately discharging to the culvertized portion of Mill Brook on the east side of the site, defined as Point of Analysis 1 (POA-1).
- P- Watershed-5: This watershed consists of pedestrian walkways and synthetic turf baseball field areas on the east side of the site that are collected via underdrain piping and area drains and passed through a series of small detention basins prior to discharging to the culvertized portion of Mill Brook on the east side of the site, defined as Point of Analysis 1 (POA-1).

Flood Storage

As discussed previously within this report the site is graphically located within Flood Zones X and AE per FEMA mapping, but the actual elevations per the Flood Impact Study occur within the banks of the Mill Brook. There is a small compensatory storage area on the east side of the existing building that was for a previous project but not defined by elevations or compensatory storage volumes. This area will be disturbed by the proposed High School project. The proposed project even though not within flood plain elevations will emulate the existing compensatory storage by providing compensatory storage within the stone of the turf fields that far exceed the volume held by the existing flood storage area.

Results/ Summary

Analysis:

The analysis was based on the pre and post development peak discharge rates at the point of analysis. The proposed construction of the school campus will result in an increase in impervious area, therefore the proposed stormwater management system will be designed to mitigate any increase in the rate of runoff and improve stormwater quality in accordance with the requirements of the Massachusetts Stormwater Management Policy Standards.

Results of Analysis:

Through the use of the HydroCAD Software, the curve numbers, times of concentrations, and peak discharge rates were determined for both the existing conditions and the proposed conditions. The results of the study shows that both the post-development peak rates of runoff are equal or less than the existing rates. The rainfall data used to develop the analysis in Table 1 is based on NOAA Atlas 14 point precipitation frequency estimates for the site.

As shown in Table 1, the post development peak rates of runoff from the site to each POA will be mitigated.

	Table 1 – POA-1 : Peak Rates of Runoff				
	2-year storm (cfs)	10-year storm (cfs)	25-year storm (cfs)	100-year storm (cfs)	
Existing	22.53	49.33	67.06	94.91	
Proposed	21.54	46.88	64.17	86.42	

Stormwater Management Standards

The Department of Environmental Protection has implemented the Stormwater Management Standards as of November 18, 1996 and updated them in April 2008. The standards met are described below and in the Stormwater Management Form as provided by DEP.

Standard #1: Untreated Stormwater

The project is designed so that stormwater conveyances (outfalls/discharges) do not discharge untreated stormwater into, or cause erosion to, wetlands or waters.

Page 5 Arlington High School Stormwater Management Narrative 05/07/2020; Revised 5/28/20

Therefore Standard #1 is met.

Standard #2: Post-development peak discharge rates

The proposed construction of Arlington High School will result in an overall site increase in impervious area. The proposed stormwater management system has been designed so that there is no increase in post construction discharge rates from the site for each point of analysis by the introduction of stormwater BMPS such as bioretention areas and underground infiltration basins. See Table 1 of this report for existing and proposed flows to the Point of Analysis, showing that Standard #2 is met.

Therefore Standard #2 is met.

Standard #3: Recharge to groundwater

Loss of annual recharge to groundwater shall be eliminated or minimized through the use of environmentally sensitive site design, stormwater best management practices, and good operation and maintenance procedures. At a minimum, the annual recharge from the post- development site shall approximate the annual recharge from pre-development conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

Soil types have been identified based on the information contained in the Soil Report (see Soil Report within appendices of this report). Based on the available soil information provided in the appendices of this report, we have determined that the soils are consistent with Hydrologic soil type "B" which require runoff to be infiltrated (as listed in the table below) from new impervious areas. Test pit data from testing done on site confirms the Soil Report information in the appendices of this report.

Hydrologic Group Volu	me to Recharge x (Total Impervious Area)
Hydrologic Group	Volume to Recharge x Total Impervious Area
	-
A	0.60 inches of runoff
В	0.35 inches of runoff
С	0.25 inches of runoff
D	0.10 inches of runoff

"B" Soils

Infiltration Rate: 0.35 inches of runoff

Existing Impervious Area: 7.78 Ac. (338,984 sf) Proposed Impervious Area: 8.63 Ac. (375,923 sf)

Proposed Site New Impervious Area in "B" Soils: 36,939 sf

 $36,939 \text{ sf } x \ 0.35 \ x \ (1/12) = 1,077 \text{ cf}$

Total required recharge volume: 1,077 cf

Proposed Recharge Volume:

Infiltration System UGS-1 = 3,251 cf

Page 6 Arlington High School Stormwater Management Narrative 05/07/2020; Revised 5/28/20

Total provided recharge volume: 3,251 cf

Drawdown Time:

UGS-1 (maximum time 72 hours) = $3,251 \text{ cf} / (1.02 \text{ in/hr} \times 1,672 \text{ sf} / 12 \text{ in/ft}) = 22.88 \text{ hours}$

Therefore Standard #3 is met.

Standard #4: TSS removal

The BMP's selected to remove TSS from impervious areas for this include: Deep Sump Catch Basins (CB), Water Quality Units (WQU), three (3) bioretention areas & an Infiltration System (UGS-1). Building roof runoff is considered "clean" and therefore does not require TSS removal.

P-Watershed-1: (Parking, Walkways)

Deep Sump Catch Basin: (1.00)(1.00-0.25)= 0.75 Water Quality Unit: (0.75)(1.00-0.80)=0.15

Total TSS Removal = 85%

P-Watershed-1A: (Parking, Walkways)

Deep Sump Catch Basin: (1.00)(1.00-0.25)= 0.75 Water Quality Unit: (0.75)(1.00-0.80)=0.15

Total TSS Removal = 85%

P-Watershed-2: (Parking, Walkways)

Deep Sump Catch Basin: (1.00)(1.00-0.25) = 0.75

Infiltration Basin: (0.75)(1.00-0.80)=0.15

Total TSS Removal = 85%

P-Watershed-3A: (Parking, Walkways)

Deep Sump Catch Basin: (1.00)(1.00-0.25)= 0.75 Bioretention Area: (0.75)(1.00-0.90)=0.075 Bioretention Area: (0.08)(1.00-0.90)=0.008 Bioretention Area: (0.01)(1.00-0.90)=0.001

Total TSS Removal = 99.9%

P-Watershed-3B: (Parking)

Deep Sump Catch Basin: (1.00)(1.00-0.25)= 0.75 Bioretention Area: (0.75)(1.00-0.90)=0.075 Bioretention Area: (0.08)(1.00-0.90)=0.008

Total TSS Removal = 99%

Water Quality Volume:

The project qualifies for the 0.5" runoff rate applied to the total impervious area for the water quality volume, as shown in the calculations provided below. The calculations for the infiltration stormwater BMPs are shown below. Where site topography and groundwater elevation precluded the use of infiltration BMPs, proprietary water quality unit are proposed which are specifically designed to address water quality prior to discharge. Roof runoff is considered "clean" and has therefore been excluded from this calculation.

Impervious area requiring water quality treatment= 82,241 sf 82,241 sf * .0417 ft = 3,429 CF

Page 7 Arlington High School Stormwater Management Narrative 05/07/2020; Revised 5/28/20

Total Water Quality Volume Required = 3,429 CF

Proposed Water Quality Volume: Infiltration System UGS-1 = 3,251 cf Bioretention System RG-1 = 551 cf Bioretention System RG-2 = 1,200 cf Bioretention System RG-3 = 2,283 cf

Total provided water quality volume: 7,285 cf

Therefore Standard #4 is met.

Standard #5: Higher potential pollutant loads

The project site does not contain Land Uses with Higher Potential Pollutant Loads, therefore Standard #5 is met.

Standard #6: Protection of critical areas

Critical areas are Outstanding Resource Waters (ORW) as designated in 314 CMR 4.00, Special Resource Waters as designated in 314 CMR 4.00, recharge areas for public water supplies as defined in 310 CMR 22.02 (Zone Is, Zone IIs and Interim Wellhead Protection Areas for groundwater sources and Zone As for surface water sources), bathing beaches as defined in 105 CMR 445.000, cold-water fisheries as defined in 314 CMR 9.02 and 310 CMR 10.04, and shellfish growing areas as defined in 314 CMR 9.02 and 310 CMR 10.04.

The site is not located within critical areas, therefore Standard #6 is met.

Standard #7: Redevelopment projects

While a portion of the site is being redeveloped, there is an increase in impervious area, thus the project is considered New Construction and all of the Standards will be met.

Standard #8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

Soil Erosion and Sediment Control Plan:

The objectives of the Soil Erosion and Sediment Control Plan are to control erosion at its source with temporary control structures, minimize the runoff from areas of disturbance, and de-concentrate and distribute stormwater runoff through natural vegetation before discharge to critical zones such as streams or wetlands. Soil erosion control does not begin with the perimeter sediment trap. It begins at the source of the sediment, the disturbed land areas, and extends down to the control structure.

The Soil Erosion and Sediment Control Plan will be enacted in order to protect the resource areas during construction. The erosion control devices will remain in place until all exposed areas have been stabilized with vegetation or impervious surfaces.

The objective of the Soil Erosion & Sediment Control Plan that will be enacted on site is to control the vulnerability of the soil to the erosion process or the capability of moving water to detach soil particles during the construction phase(s).

The soil erosion and sediment control BMP's for the site are straw wattles with silt fence, catch basin filters, and a construction entrance as shown on design plans prepared by Samiotes Consultants, Inc.

Page 8 Arlington High School Stormwater Management Narrative 05/07/2020; Revised 5/28/20

Therefore Standard #8 is met.

Standard #9: Operation/maintenance plan

An operation and maintenance plan for both construction and post-development stormwater controls has been developed. The plan includes owner(s); parties responsible for operation and maintenance; schedule for inspection and maintenance; routine and non-routine maintenance tasks. A copy of the O&M is included in the appendices of this report.

Therefore Standard #9 is met.

Standard #10: All illicit discharges to the stormwater management system are prohibited

It is not anticipated that there will be any Illicit discharges for the project as it will be new construction, therefore Standard #10 is met.

P:\Projects\2017\17211.00 Arlington HS, 869 Mass Ave (Civil)\Documents\Hydrology

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals. This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

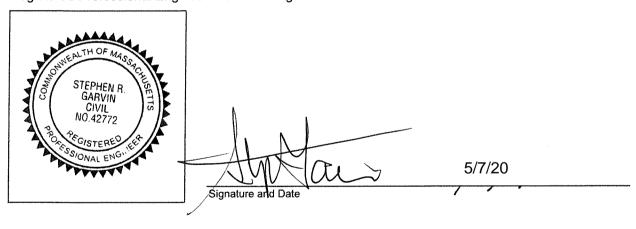
² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Checklist

	pject Type: Is the application for new development, redevelopment, or a mix of new and evelopment?
	New development
	Redevelopment
\boxtimes	Mix of New Development and Redevelopment

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	☐ Credit 2
	☐ Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
\boxtimes	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):
Sta	ndard 1: No New Untreated Discharges
	No new untreated discharges
	Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
\boxtimes	Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued) Standard 2: Peak Rate Attenuation Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding. Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm. Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm. Standard 3: Recharge Soil Analysis provided. Required Recharge Volume calculation provided. Required Recharge volume reduced through use of the LID site Design Credits. Sizing the infiltration, BMPs is based on the following method: Check the method used. ⊠ Static ☐ Simple Dynamic Dynamic Field¹ Runoff from all impervious areas at the site discharging to the infiltration BMP. Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume. Recharge BMPs have been sized to infiltrate the Required Recharge Volume. Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason: Site is comprised solely of C and D soils and/or bedrock at the land surface M.G.L. c. 21E sites pursuant to 310 CMR 40.0000 Solid Waste Landfill pursuant to 310 CMR 19.000 Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable. Calculations showing that the infiltration BMPs will drain in 72 hours are provided. Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Cł	necklist (continued)
Sta	andard 3: Recharge (continued)
	The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10-year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
	Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.
Sta	ndard 4: Water Quality
The	E Long-Term Pollution Prevention Plan typically includes the following: Good housekeeping practices; Provisions for storing materials and waste products inside or under cover; Vehicle washing controls; Requirements for routine inspections and maintenance of stormwater BMPs; Spill prevention and response plans; Provisions for maintenance of lawns, gardens, and other landscaped areas; Requirements for storage and use of fertilizers, herbicides, and pesticides; Pet waste management provisions; Provisions for operation and management of septic systems; Provisions for solid waste management; Snow disposal and plowing plans relative to Wetland Resource Areas; Winter Road Salt and/or Sand Use and Storage restrictions; Street sweeping schedules; Provisions for prevention of illicit discharges to the stormwater management system; Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL; Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan; List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
	A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent. Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
	is within the Zone II or Interim Wellhead Protection Area
	is near or to other critical areas
	is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
	involves runoff from land uses with higher potential pollutant loads.
	The Required Water Quality Volume is reduced through use of the LID site Design Credits.

Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if

applicable, the 44% TSS removal pretreatment requirement, are provided.

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Cł	necklist (continued)
Sta	andard 4: Water Quality (continued)
\boxtimes	The BMP is sized (and calculations provided) based on:
	☐ The ½" or 1" Water Quality Volume or
	☐ The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Sta	ndard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior</i> to the discharge of stormwater to the post-construction stormwater BMPs.
	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
	All exposure has been eliminated.
	All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.
	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Sta	ndard 6: Critical Areas
	The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
	Critical areas and BMPs are identified in the Stormwater Report.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The proje	ect is subject to the Stormwater Management Standards only to the maximum Extent ole as a:
Limit	red Project
provi Smal with	Il Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development ided there is no discharge that may potentially affect a critical area. Il Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development a discharge to a critical area na and/or boatyard provided the hull painting, service and maintenance areas are protected exposure to rain, snow, snow melt and runoff
Bike	Path and/or Foot Path
Rede	evelopment Project
⊠ Rede	evelopment portion of mix of new and redevelopment.
explanati The projet improve to in Volume the propet and struct	standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an ion of why these standards are not met is contained in the Stormwater Report. Lect involves redevelopment and a description of all measures that have been taken to existing conditions is provided in the Stormwater Report. The redevelopment checklist found to 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that posed stormwater management system (a) complies with Standards 2, 3 and the pretreatment ctural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) is existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued) Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued) The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has not been included in the Stormwater Report but will be submitted **before** land disturbance begins. ☐ The project is *not* covered by a NPDES Construction General Permit. The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report. The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins. Standard 9: Operation and Maintenance Plan ☐ The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information: Name of the stormwater management system owners; Party responsible for operation and maintenance; Schedule for implementation of routine and non-routine maintenance tasks: Plan showing the location of all stormwater BMPs maintenance access areas; Description and delineation of public safety features; Estimated operation and maintenance budget; and □ Operation and Maintenance Log Form. The responsible party is **not** the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions: A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs; A plan and easement deed that allows site access for the legal entity to operate and maintain

Standard 10: Prohibition of Illicit Discharges

BMP functions.

The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;

☐ An Illicit Discharge Compliance Statement is attached;

NO Illicit Discharge Compliance Statement is attached but will be submitted **prior to** the discharge of any stormwater to post-construction BMPs.

APPENDIX 1:

Existing Hydrology Calculations

APPENDIX 2:

Proposed Hydrology Calculations

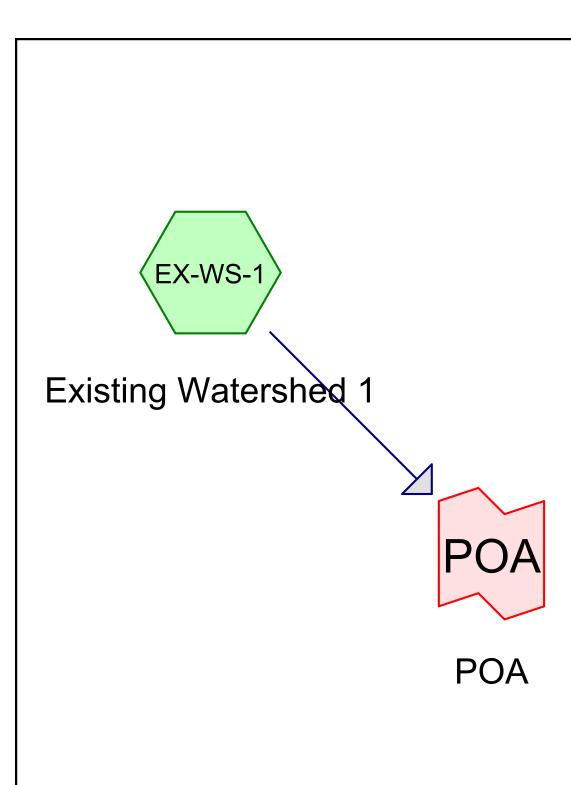
APPENDIX 3:

Test Pit Logs Soils Report

APPENDIX 4:

Operations and Maintenance Plan

APPENDIX 5:


Calculations

APPENDIX 6:

Sketches

APPENDIX 1:

Existing Hydrology Calculations

17211.00 Arlington HS - Existing Conditions - NOI Resubmission
Prepared by Samiotes Engineering
HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Printed 5/28/2020 Page 2

Area Listing (all nodes)

Area	CN	Description	
(acres)		(subcatchment-numbers)	
9.598	61	>75% Grass cover, Good, HSG B (EX-WS-1)	
5.051	98	Impervious (EX-WS-1)	
2.731	98	Roofs, HSG B (EX-WS-1)	
0.020	55	Woods, Good, HSG B (EX-WS-1)	
17.400	78	TOTAL AREA	

Prepared by Samiotes Engineering

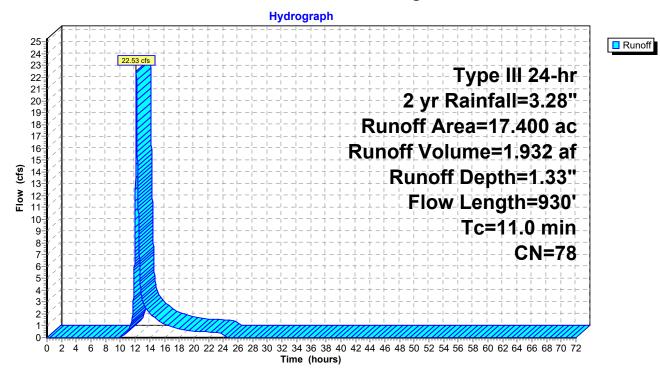
Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 3

Summary for Subcatchment EX-WS-1: Existing Watershed 1

Runoff = 22.53 cfs @ 12.16 hrs, Volume= 1.932 af, Depth= 1.33"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 yr Rainfall=3.28"

* 5.051 98 Impervious 2.731 98 Roofs, HSG B 9.598 61 >75% Grass cover, Good, HSG B 0.020 55 Woods, Good, HSG B 17.400 78 Weighted Average	
2.731 98 Roofs, HSG B 9.598 61 >75% Grass cover, Good, HSG B 0.020 55 Woods, Good, HSG B 17.400 78 Weighted Average	
<u>0.020 55 Woods, Good, HSG B</u> 17.400 78 Weighted Average	
17.400 78 Weighted Average	
9.618 55.28% Pervious Area	
7.782 44.72% Impervious Area	
7.702 11.7270 Importious 74.00	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs)	
7.4 50 0.0100 0.11 Sheet Flow, 50' SF	
Grass: Short n= 0.150 P2= 3.20"	
1.9 220 0.0140 1.90 Shallow Concentrated Flow, 220' SCF	
Unpaved Kv= 16.1 fps	
0.9 140 0.0150 2.49 Shallow Concentrated Flow, 140' SCF (paved)	
Paved Kv= 20.3 fps	
0.1 20 0.0100 4.91 3.86 Pipe Channel, 12" Pipe Flow	
12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'	
n= 0.012	
0.7 500 0.0050 11.67 466.77 Pipe Channel, Box Culvert Flow	
96.0" x 60.0" Box Area= 40.0 sf Perim= 26.0' r=	1 54'
n= 0.012	
11.0 930 Total	

Page 4

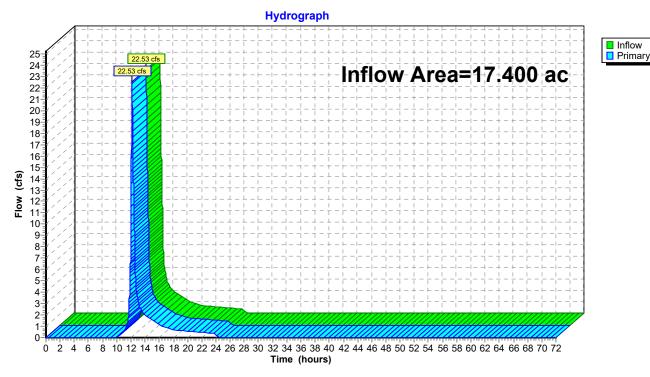
HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Subcatchment EX-WS-1: Existing Watershed 1

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 5

Summary for Link POA: POA


Inflow Area = 17.400 ac, 44.72% Impervious, Inflow Depth = 1.33" for 2 yr event

Inflow = 22.53 cfs @ 12.16 hrs, Volume= 1.932 af

Primary = 22.53 cfs @ 12.16 hrs, Volume= 1.932 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link POA: POA

Prepared by Samiotes Engineering

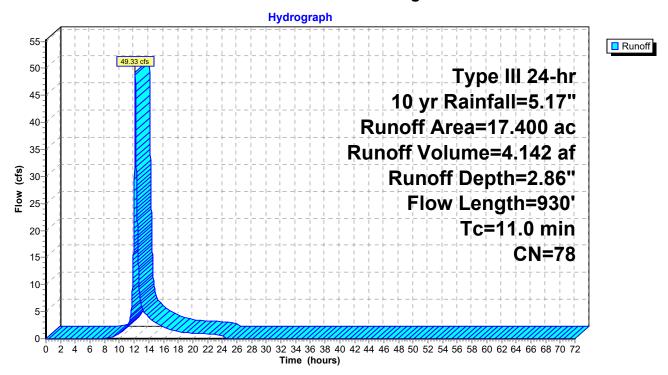
Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment EX-WS-1: Existing Watershed 1

Runoff = 49.33 cfs @ 12.15 hrs, Volume= 4.142 af, Depth= 2.86"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.17"

	Area	(ac) C	N Des	cription		
*	5.	051 9	8 Impe	ervious		
	2.	731 9	98 Root	fs, HSG B		
	9.	598 6	31 >75°	% Grass c	over, Good	, HSG B
0.020 55 Woods, Good, HSG B					HSG B	
17.400 78 Weighted Average			ghted Aver	rage		
	9.	618		8% Pervio		
	7.	782	44.7	2% Imper	vious Area	
				•		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.4	50	0.0100	0.11		Sheet Flow, 50' SF
						Grass: Short n= 0.150 P2= 3.20"
	1.9	220	0.0140	1.90		Shallow Concentrated Flow, 220' SCF
						Unpaved Kv= 16.1 fps
	0.9	140	0.0150	2.49		Shallow Concentrated Flow, 140' SCF (paved)
						Paved Kv= 20.3 fps
	0.1	20	0.0100	4.91	3.86	Pipe Channel, 12" Pipe Flow
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.012
	0.7	500	0.0050	11.67	466.77	Pipe Channel, Box Culvert Flow
						96.0" x 60.0" Box Area= 40.0 sf Perim= 26.0' r= 1.54'
_						n= 0.012
	11.0	930	Total			

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

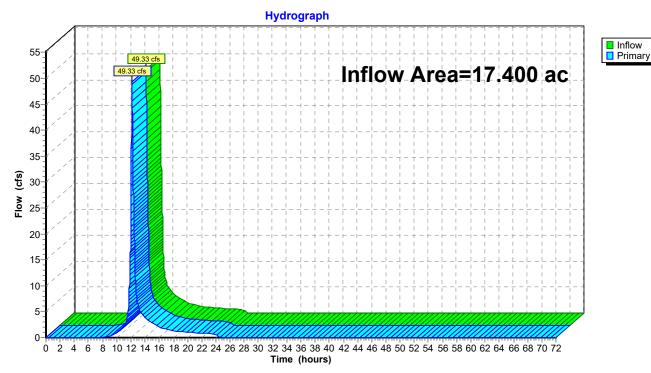
Subcatchment EX-WS-1: Existing Watershed 1

Page 7

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 8

Summary for Link POA: POA


Inflow Area = 17.400 ac, 44.72% Impervious, Inflow Depth = 2.86" for 10 yr event

Inflow = 49.33 cfs @ 12.15 hrs, Volume= 4.142 af

Primary = 49.33 cfs @ 12.15 hrs, Volume= 4.142 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link POA: POA

Prepared by Samiotes Engineering

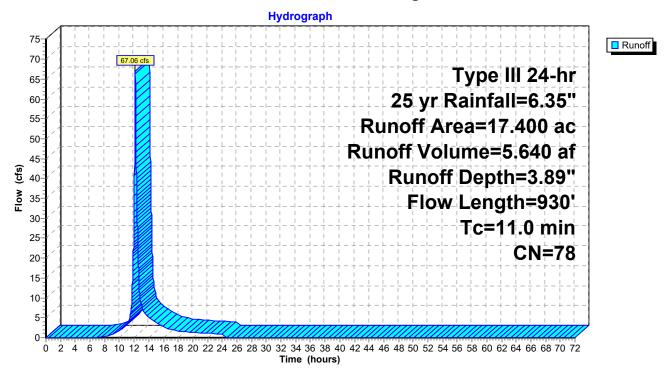
Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 9

Summary for Subcatchment EX-WS-1: Existing Watershed 1

Runoff = 67.06 cfs @ 12.15 hrs, Volume= 5.640 af, Depth= 3.89"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 yr Rainfall=6.35"

Area	(ac) C	N Des	cription		
* 5.	.051 9	98 Impe	ervious		
2.	.731 9	98 Root	fs, HSG B		
9.	.598 6	31 >75°	% Grass c	over, Good	, HSG B
0.020 55 Woods, Good, HSG B					
17.400 78 Weighted Average					
9.	9.618 55.28% Pervious Area			•	
7.	.782	44.7	2% Imperv	/ious Area	
			·		
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.4	50	0.0100	0.11		Sheet Flow, 50' SF
					Grass: Short n= 0.150 P2= 3.20"
1.9	220	0.0140	1.90		Shallow Concentrated Flow, 220' SCF
					Unpaved Kv= 16.1 fps
0.9	140	0.0150	2.49		Shallow Concentrated Flow, 140' SCF (paved)
					Paved Kv= 20.3 fps
0.1	20	0.0100	4.91	3.86	Pipe Channel, 12" Pipe Flow
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.012
0.7	500	0.0050	11.67	466.77	Pipe Channel, Box Culvert Flow
					96.0" x 60.0" Box Area= 40.0 sf Perim= 26.0' r= 1.54'
					n= 0.012
11.0	930	Total			

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Subcatchment EX-WS-1: Existing Watershed 1

Page 10

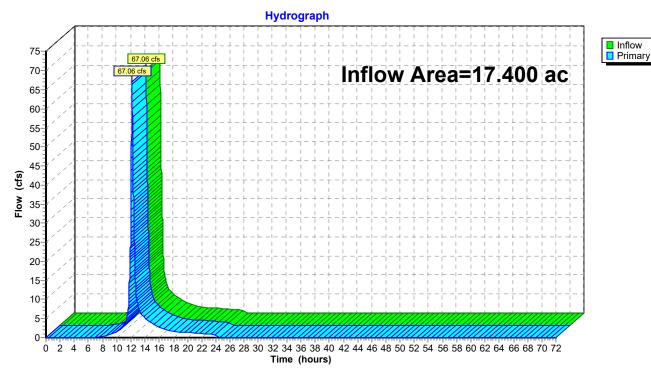
Prepared by Samiotes Engineering

Printed 5/28/2020

Page 11

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Summary for Link POA: POA


Inflow Area = 17.400 ac, 44.72% Impervious, Inflow Depth = 3.89" for 25 yr event

Inflow = 67.06 cfs @ 12.15 hrs, Volume= 5.640 af

Primary = 67.06 cfs @ 12.15 hrs, Volume= 5.640 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link POA: POA

Prepared by Samiotes Engineering

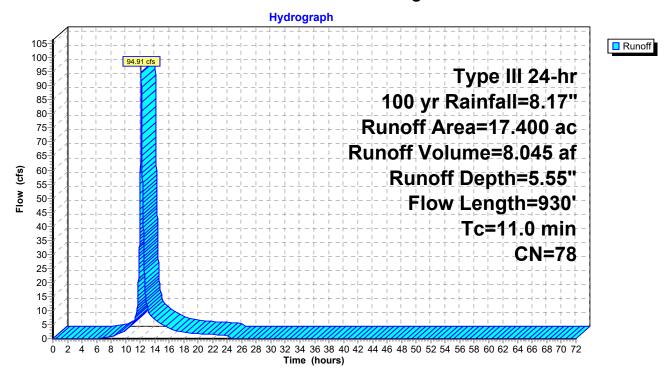
Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 12

Summary for Subcatchment EX-WS-1: Existing Watershed 1

Runoff = 94.91 cfs @ 12.15 hrs, Volume= 8.045 af, Depth= 5.55"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 yr Rainfall=8.17"

	Area	(ac) C	N Desc	cription		
*	5.	051 9	98 Impe	ervious		
	2.	731 9	8 Root	s, HSG B		
	9.	598 6	31 >75°	% Grass co	over, Good	, HSG B
	0.	020 5	55 Woo	ds, Good,	HSG B	
	17.	400 7	78 Weig	ghted Aver	age	
	9.	618	55.2	8% Pervio	us Area	
	7.	782	44.7	2% Imper	∕ious Area	
	Тс	Length	Slope	•	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.4	50	0.0100	0.11		Sheet Flow, 50' SF
						Grass: Short n= 0.150 P2= 3.20"
	1.9	220	0.0140	1.90		Shallow Concentrated Flow, 220' SCF
						Unpaved Kv= 16.1 fps
	0.9	140	0.0150	2.49		Shallow Concentrated Flow, 140' SCF (paved)
						Paved Kv= 20.3 fps
	0.1	20	0.0100	4.91	3.86	Pipe Channel, 12" Pipe Flow
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.012
	0.7	500	0.0050	11.67	466.77	•
						96.0" x 60.0" Box Area= 40.0 sf Perim= 26.0' r= 1.54'
_						n= 0.012
	11.0	930	Total			

Page 13

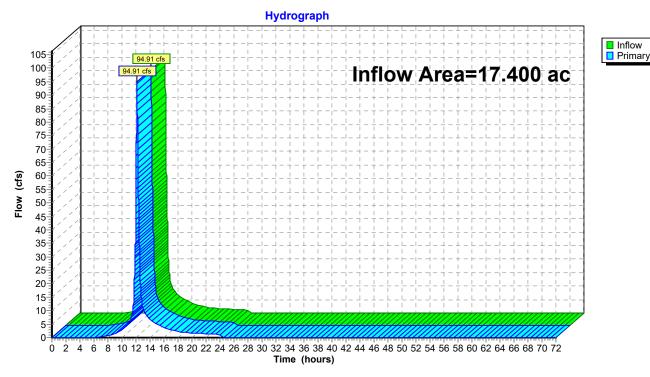
HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Subcatchment EX-WS-1: Existing Watershed 1

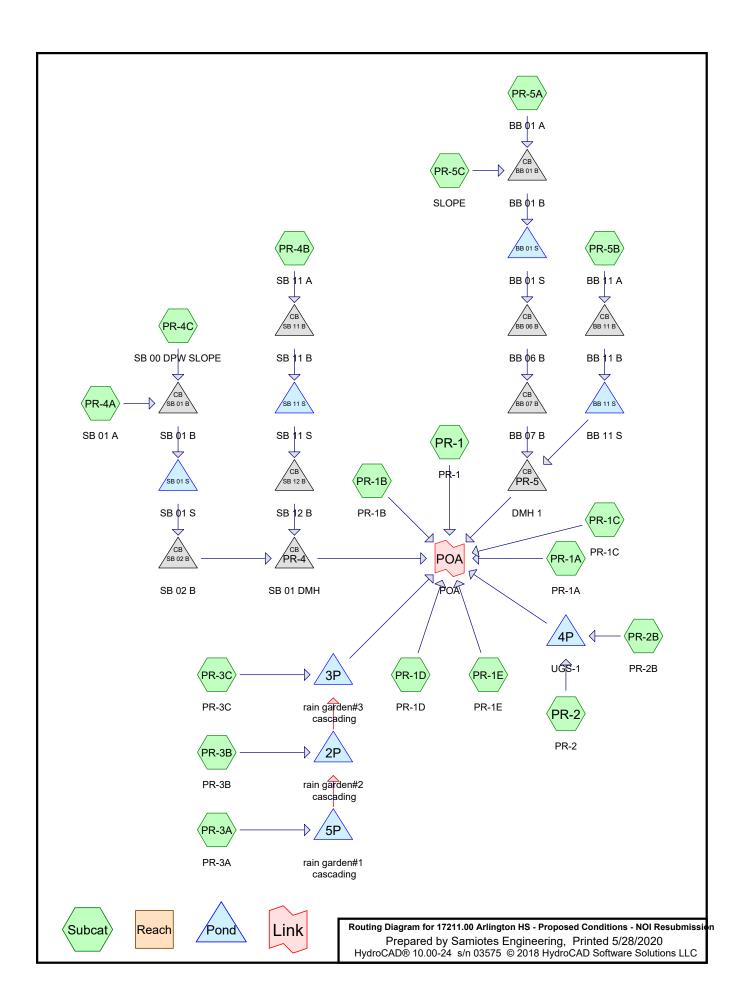
HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 14

Summary for Link POA: POA


Inflow Area = 17.400 ac, 44.72% Impervious, Inflow Depth = 5.55" for 100 yr event

Inflow = 94.91 cfs @ 12.15 hrs, Volume= 8.045 af


Primary = 94.91 cfs @ 12.15 hrs, Volume= 8.045 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link POA: POA

APPENDIX 2: Proposed Hydrology Calculations

17211.00 Arlington HS - Proposed Conditions - NOI Resubmission

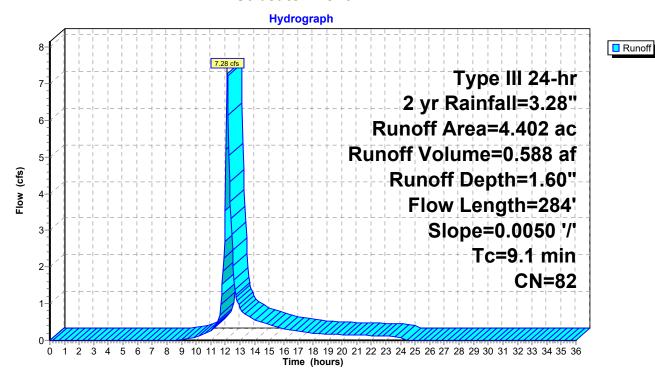
Prepared by Samiotes Engineering
HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Printed 5/28/2020 Page 2

Area Listing (all nodes)

Area	CN	Description	
 (acres)		(subcatchment-numbers)	
4.473	61	>75% Grass cover, Good, HSG B (PR-1, PR-1A, PR-1C, PR-1E, PR-2, PR-3A, PR-3B, PR-3C)	
0.220	74	>75% Grass cover, Good, HSG C (PR-4C, PR-5C)	
4.964	98	Paved parking, HSG B (PR-1, PR-1A, PR-1C, PR-1E, PR-2, PR-3A, PR-3B)	
3.627	98	Roofs, HSG B (PR-1B, PR-1D, PR-2B)	
4.056	85	SYNTHETIC TURF- PAD- LINER (PR-4A, PR-4B, PR-5A, PR-5B)	
0.025	98	Unconnected pavement, HSG A (PR-4C)	
0.014	98	Unconnected roofs, HSG C (PR-5C)	
0.020	55	Woods, Good, HSG B (PR-1C)	
17.400	85	TOTAL AREA	

Page 3


Summary for Subcatchment PR-1: PR-1

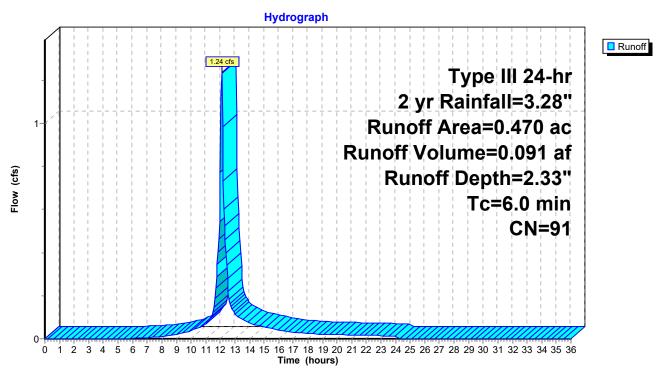
Runoff = 7.28 cfs @ 12.13 hrs, Volume= 0.588 af, Depth= 1.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

_	Area	Area (ac) CN Description							
	1.	892 6	61 >75°	% Grass c	over, Good	, HSG B			
_	2.	510	98 Pave	ed parking	, HSG B				
	4.	402 8	32 Weig	ghted Aver	age				
	1.	892	42.9	8% Pervio	us Area				
	2.	510	57.0	2% Imperv	ious Area				
					_				
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	1.2	50	0.0050	0.69		Sheet Flow, A-B			
						Smooth surfaces n= 0.011 P2= 3.20"			
	7.9	234	0.0050	0.49		Shallow Concentrated Flow, B-C			
_						Short Grass Pasture Kv= 7.0 fps			
	9 1	284	Total	·					

Subcatchment PR-1: PR-1

Page 4


Summary for Subcatchment PR-1A: PR-1A

Runoff = 1.24 cfs @ 12.09 hrs, Volume= 0.091 af, Depth= 2.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

Area	a (ac)	CN	Desc	cription		
(0.090	61	>759	% Grass co	over, Good	I, HSG B
0.380 98 Paved parking, HSG B						
-	0.470	91	Weig	ghted Aver	age	
	0.090		19.1	5% Pervio	us Area	
(0.380		80.8	5% Imperv	∕ious Area	
To	: Leng	nth	Slope	Velocity	Capacity	Description
(min)		,	(ft/ft)	(ft/sec)	(cfs)	Description
6.0)	,	·	,	, ,	Direct Entry,

Subcatchment PR-1A: PR-1A

Page 5

Summary for Subcatchment PR-1B: PR-1B

Runoff = 5.79 cfs @ 12.09 hrs, Volume= 0.473 af, Depth= 3.05"

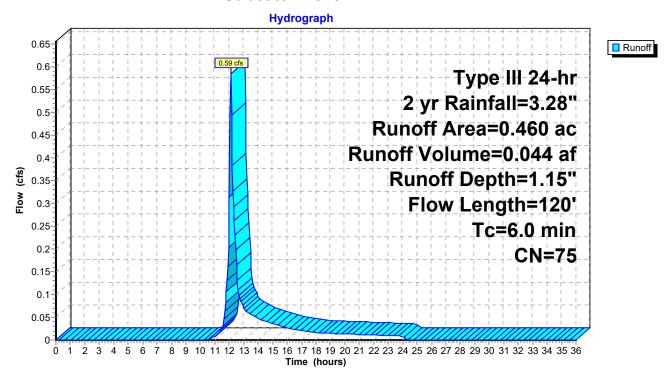
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

 Area (ac) CN Description						
1.	861	98	Roof	s, HSG B		
1.	861		100.	00% Impe	rvious Area	a
 Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry,

Subcatchment PR-1B: PR-1B

Page 6

Summary for Subcatchment PR-1C: PR-1C


Runoff = 0.59 cfs @ 12.10 hrs, Volume= 0.044 af, Depth= 1.15"

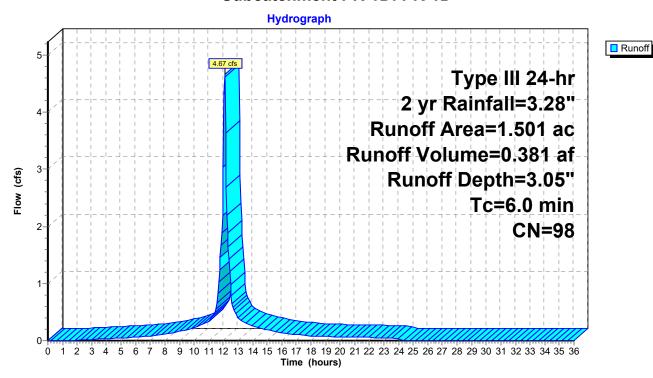
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

_	Area	(ac) C	N Des	cription				
	0.	020 5	55 Woo	ds, Good,	HSG B			
	0.	260 6	31 >75°	% Grass co	over, Good	, HSG B		
0.180 98 Paved parking, HSG B								
	0.	460 7	75 Weig	hted Aver	age			
	0.	280	60.8	7% Pervio	us Area			
	0.	180	39.1	3% Imperv	/ious Area			
	Tc	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	3.6	20	0.0700	0.09		Sheet Flow, 20' SF		
						Woods: Light underbrush n= 0.400 P2= 3.20"		
	1.9	40	0.5000	0.35		Sheet Flow, 30' SF		
						Grass: Dense n= 0.240 P2= 3.20"		
	0.1	12	0.0100	1.61		Shallow Concentrated Flow, 12' SCF		
						Unpaved Kv= 16.1 fps		
	0.2	48	0.0400	4.06		Shallow Concentrated Flow, 48' SCF		
_						Paved Kv= 20.3 fps		
		400				T 00 :		

5.8 120 Total, Increased to minimum Tc = 6.0 min

Subcatchment PR-1C: PR-1C

Page 7


Summary for Subcatchment PR-1D: PR-1D

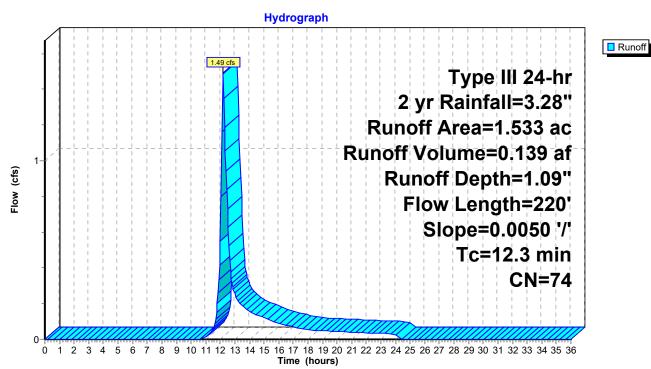
Runoff = 4.67 cfs @ 12.09 hrs, Volume= 0.381 af, Depth= 3.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

_	Area (ac) CN Description				cription		
	1.	501	98	Roof	s, HSG B		
	1.501 100.00% Impervious Area						a a constant of the constant o
	Тс	Leng	th	Slope	Velocity	Capacity	Description
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	
	6.0	-			-		Direct Entry,

Subcatchment PR-1D: PR-1D

Page 8


Summary for Subcatchment PR-1E: PR-1E

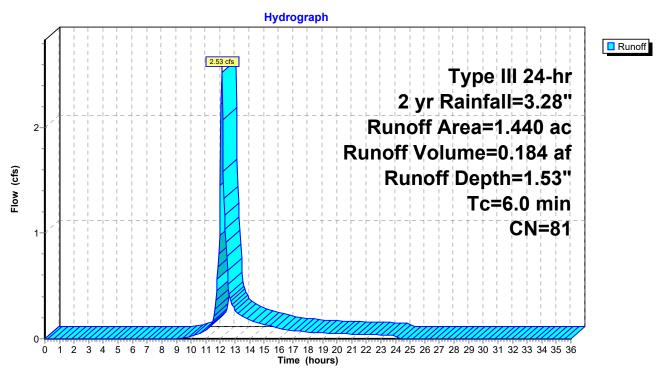
Runoff = 1.49 cfs @ 12.19 hrs, Volume= 0.139 af, Depth= 1.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

_	Area	(ac) C	N Des	cription		
	1.	000	61 >75°	% Grass c	over, Good	, HSG B
_	0.	533	98 Pave	ed parking	, HSG B	
	1.	533	74 Wei	ghted Aver	age	
	1.	000	65.2	3% Pervio	us Area	
	0.	533	34.7	7% Imper	∕ious Area	
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	9.8	50	0.0050	0.09		Sheet Flow, 50' SF
	2.5	170	0.0050	1.14		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, 170' SCF Unpaved Kv= 16.1 fps
	12 3	220	Total	•	•	

Subcatchment PR-1E: PR-1E

Page 9


Summary for Subcatchment PR-2: PR-2

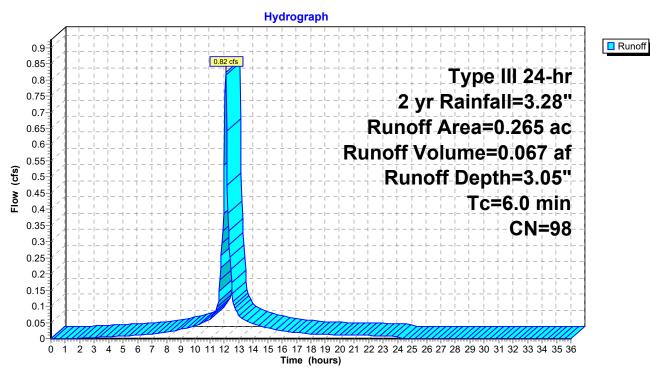
Runoff = 2.53 cfs @ 12.09 hrs, Volume= 0.184 af, Depth= 1.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

Area	(ac)	CN	Desc	ription		
0.	672	61	>75%	6 Grass co	over, Good	, HSG B
0.	.768	98	Pave	ed parking,	HSG B	
1.	440	81	Weig	hted Aver	age	
0.	.672		46.6	7% Pervio	us Area	
0.	0.768			3% Imperv	ious Area	
Тс	Leng	th :	Slope	Velocity	Capacity	Description
(min)	(min) (feet) (ft/ft) (ft/sec) (cfs)				(cfs)	
6.0						Direct Entry,

Subcatchment PR-2: PR-2

Page 10


Summary for Subcatchment PR-2B: PR-2B

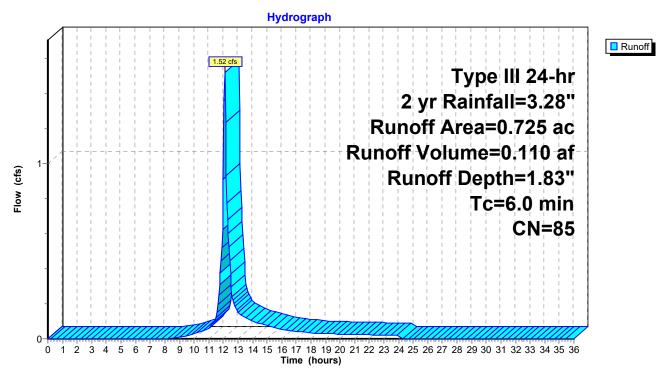
Runoff = 0.82 cfs @ 12.09 hrs, Volume= 0.067 af, Depth= 3.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

 Area	(ac)	CN	Desc	cription		
0.	265	98	Roof	s, HSG B		
0.265 100.00% Impervious Area						n e e e e e e e e e e e e e e e e e e e
Тс	Leng	th :	Slope	Velocity	Capacity	Description
 (min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
6.0						Direct Entry,

Subcatchment PR-2B: PR-2B

Page 11


Summary for Subcatchment PR-3A: PR-3A

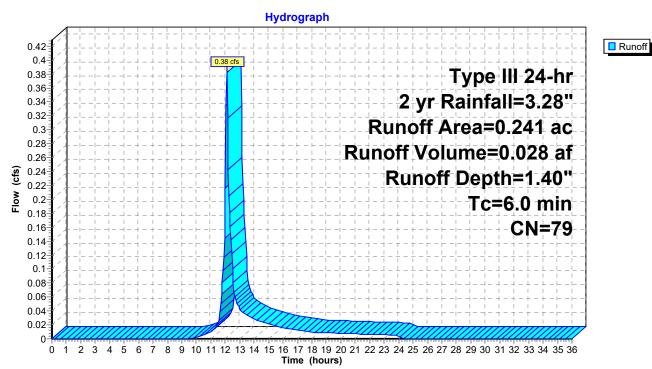
Runoff = 1.52 cfs @ 12.09 hrs, Volume= 0.110 af, Depth= 1.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

Area	(ac)	CN	Desc	cription		
0.	.249	61	>75%	√ Grass co	over, Good	, HSG B
0.	.476	98	Pave	ed parking	HSG B	
0.	.725	85	Weig	hted Aver	age	
0.	.249		34.3	4% Pervio	us Area	
0.	0.476			6% Imperv	vious Area	
Тс	Leng		Slope	Velocity	Capacity	Description
(min)	(min) (feet) (ft/ft) (ft/sec) (cfs)				(cfs)	
6.0						Direct Entry,

Subcatchment PR-3A: PR-3A

Page 12


Summary for Subcatchment PR-3B: PR-3B

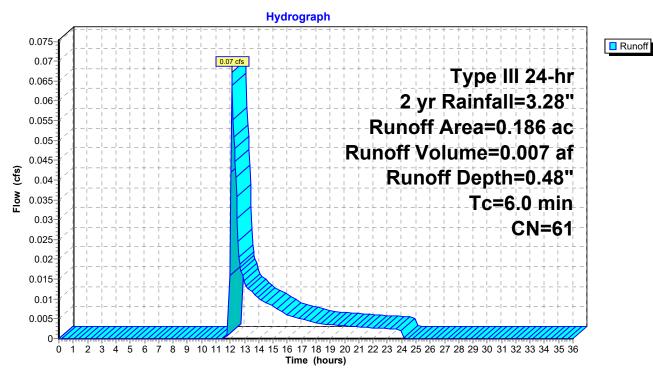
Runoff = 0.38 cfs @ 12.10 hrs, Volume= 0.028 af, Depth= 1.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

_	Area	(ac)	CN	Desc	cription					
	0.	124	61	>75%	√ Grass co	over, Good	, HSG B			
	0.	117	98	Pave	Paved parking, HSG B					
	0.241 79 Weighted Average									
	0.	124		51.4	5% Pervio	us Area				
	0.117 48.559				5% Imperv	ious Area				
	То	Long	łh.	Clana	Volocity	Conneity	Description			
	Tc	Leng		Slope	Velocity	Capacity	Description			
_	(min) (feet) (ft/ft) (ft/sec) (cfs)				(ii/sec)	(CIS)				
6.0							Direct Entry,			

Subcatchment PR-3B: PR-3B

Page 13


Summary for Subcatchment PR-3C: PR-3C

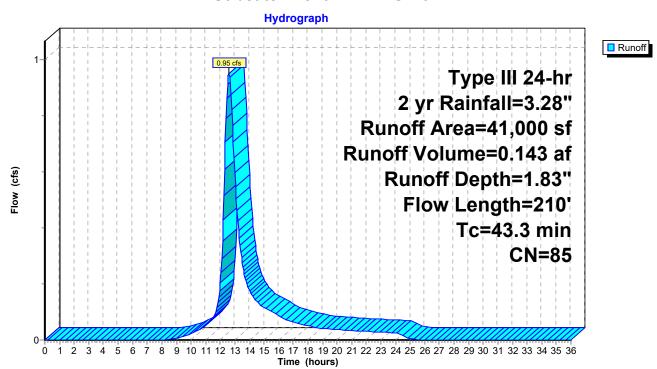
Runoff = 0.07 cfs @ 12.12 hrs, Volume= 0.007 af, Depth= 0.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

Area	(ac)	CN E			
0.	.186	61 >	75% Grass	cover, Good	d, HSG B
0.	.186	1	00.00% Per	vious Area	
Tc (min)	Lengti (feet				Description
6.0					Direct Entry,

Subcatchment PR-3C: PR-3C

Page 14


Summary for Subcatchment PR-4A: SB 01 A

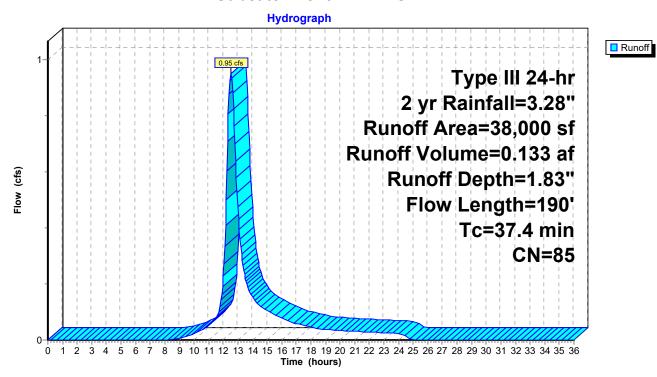
Runoff = 0.95 cfs @ 12.60 hrs, Volume= 0.143 af, Depth= 1.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

	Α	rea (sf)	CN I	Description					
*		41,000 85 SYNTHETIC TURF- PAD- LINER							
		41,000		100.00% P	ervious Are	a			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	39.6	110	0.0055	0.05		Sheet Flow, Through Turf Section			
	3.7	100	0.0001	0.45	0.16	Grass: Bermuda n= 0.410 P2= 3.20" Pipe Channel, TRENCH DRAIN LEVEL 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.010			
	43.3	210	Total						

Subcatchment PR-4A: SB 01 A

Page 15


Summary for Subcatchment PR-4B: SB 11 A

Runoff = 0.95 cfs @ 12.52 hrs, Volume= 0.133 af, Depth= 1.83"

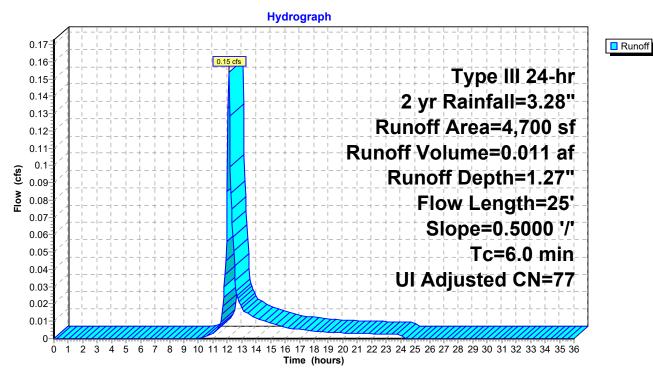
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

	Α	rea (sf)	CN I	Description		
*		38,000	85	SYNTHETI	C TURF- P	AD- LINER
		38,000		100.00% P	ervious Are	ea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	33.7	90	0.0055	0.04		Sheet Flow, Through Turf Section
	3.7	100	0.0001	0.45	0.16	Grass: Bermuda n= 0.410 P2= 3.20" Pipe Channel, TRENCH DRAIN LEVEL 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.010
	37.4	190	Total			

Subcatchment PR-4B: SB 11 A

Page 16

Summary for Subcatchment PR-4C: SB 00 DPW SLOPE


Runoff = 0.15 cfs @ 12.10 hrs, Volume= 0.011 af, Depth= 1.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

1,100 98 Unconnected pavement, HSG A 3,600 74 >75% Grass cover, Good, HSG C	
3 600 74 >75% Grass cover Good HSG C	
4,700 80 77 Weighted Average, UI Adjusted	
3,600 76.60% Pervious Area	
1,100 23.40% Impervious Area	
1,100 100.00% Unconnected	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
1.3 25 0.5000 0.32 Sheet Flow, SLOPING LAND	
Grass: Dense n= 0.240 P2= 3.20"	

1.3 25 Total, Increased to minimum Tc = 6.0 min

Subcatchment PR-4C: SB 00 DPW SLOPE

Page 17

Summary for Subcatchment PR-5A: BB 01 A

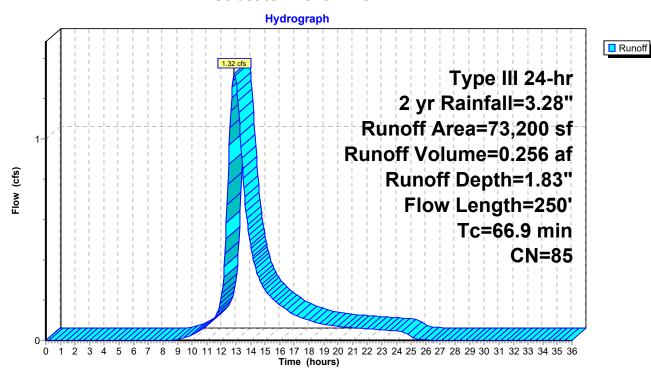
Runoff = 0.81 cfs @ 12.28 hrs, Volume= 0.086 af, Depth= 1.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

	Α	rea (sf)	CN	Description		
*		24,500	85	SYNTHETI	C TURF- P	AD- LINER
		24,500		100.00% P	ervious Are	ea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	18.2	46	0.0067	0.04		Sheet Flow, Through Turf Section
	1.7	47	0.0001	0.45	0.16	Grass: Bermuda n= 0.410 P2= 3.20" Pipe Channel, TRENCH DRAIN LEVEL 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.010
	19.9	93	Total			

Subcatchment PR-5A: BB 01 A

Page 18


Summary for Subcatchment PR-5B: BB 11 A

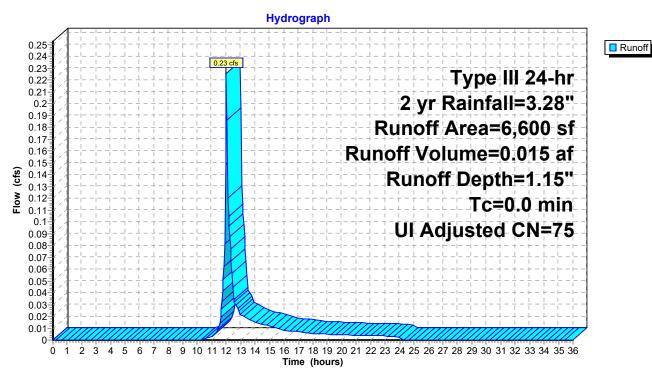
Runoff = 1.32 cfs @ 12.90 hrs, Volume= 0.256 af, Depth= 1.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

	Α	rea (sf)	CN [Description			
*		73,200	85 3	85 SYNTHETIC TURF- PAD- LINER			
		73,200	,	100.00% P	ervious Are	a	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	22.1	53	0.0055	0.04		Sheet Flow, Through Turf Section Grass: Bermuda n= 0.410 P2= 3.20"	
	43.1	150	0.0083	0.06		Sheet Flow, SYNTHETIC TURF Grass: Bermuda n= 0.410 P2= 3.20"	
_	1.7	47	0.0001	0.45	0.16	Pipe Channel, TRENCH DRAIN LEVEL 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.010	
	66.9	250	Total		•		

Subcatchment PR-5B: BB 11 A

Page 19


Summary for Subcatchment PR-5C: SLOPE

Runoff = 0.23 cfs @ 12.01 hrs, Volume= 0.015 af, Depth= 1.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.28"

Area (sf)	CN	Adj	Description
600	98		Unconnected roofs, HSG C
6,000	74		>75% Grass cover, Good, HSG C
6,600	76	75	Weighted Average, UI Adjusted
6,000			90.91% Pervious Area
600			9.09% Impervious Area
600			100.00% Unconnected

Subcatchment PR-5C: SLOPE

Page 20

Summary for Pond 2P: rain garden#2 cascading

Inflow Area = 0.966 ac, 61.39% Impervious, Inflow Depth > 1.67" for 2 yr event

Inflow = 1.90 cfs @ 12.10 hrs, Volume= 0.134 af

Outflow = 1.61 cfs @ 12.17 hrs, Volume= 0.118 af, Atten= 15%, Lag= 4.5 min

Primary = 0.03 cfs @ 12.15 hrs, Volume = 0.045 afSecondary = 1.59 cfs @ 12.17 hrs, Volume = 0.072 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 54.58' @ 12.15 hrs Surf.Area= 1,062 sf Storage= 1,285 cf Flood Elev= 55.00' Surf.Area= 1,326 sf Storage= 1,784 cf

Plug-Flow detention time= 218.3 min calculated for 0.118 af (88% of inflow)

Center-of-Mass det. time= 127.7 min (1,032.2 - 904.5)

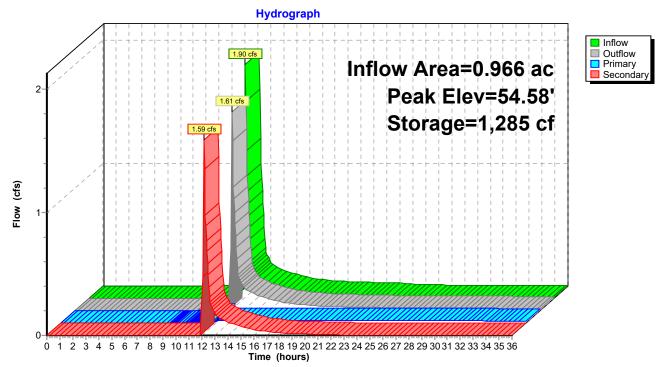
Volume	Invert	Avail.Storage	Storage Description
#1	51.00'	1,557 cf	Rain Garden Envelope (Prismatic)Listed below (Recalc)
			2,357 cf Overall - 800 cf Embedded = 1,557 cf
#2	51.00'	80 cf	crush stone (Prismatic)Listed below (Recalc) Inside #1
			200 cf Overall x 40.0% Voids
#3	51.50'	133 cf	Bio Media (Prismatic)Listed below (Recalc) Inside #1
			532 cf Overall x 25.0% Voids
#4	52.83'	14 cf	Mulch (Prismatic)Listed below (Recalc) Inside #1
			68 cf Overall x 20.0% Voids

1,784 cf Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
51.00	400	0	0
53.00	400	800	800
54.00	694	547	1,347
55.00	1,326	1,010	2,357
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
51.00	400	0	0
51.50	400	200	200
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
51.50	400	0	0
52.83	400	532	532
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
52.83	400	0	0
53.00	400	68	68

17211.00 Arlington HS - Proposed Conditions - NOI Resu*Type III 24-hr* 2 *yr Rainfall=3.28"*Prepared by Samiotes Engineering
HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC
Page 21

Device	Routing	Invert	Outlet Devices
#1	Device 3	51.00'	1.020 in/hr Exfiltration over Surface area
#2	Secondary	54.50'	25.0' long x 3.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.92 2.97 3.07 3.32
#3	Primary	51.00'	12.0" Round Culvert L= 25.0' Ke= 0.500
	•		Inlet / Outlet Invert= 51.00' / 50.88' S= 0.0048 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf


Primary OutFlow Max=0.03 cfs @ 12.15 hrs HW=54.58' TW=46.87' (Dynamic Tailwater)

3=Culvert (Passes 0.03 cfs of 6.64 cfs potential flow)

1=Exfiltration (Exfiltration Controls 0.03 cfs)

Secondary OutFlow Max=1.40 cfs @ 12.17 hrs HW=54.58' TW=47.44' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 1.40 cfs @ 0.69 fps)

Pond 2P: rain garden#2 cascading

Prepared by Samiotes Engineering

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 22

Summary for Pond 3P: rain garden#3 cascading

Inflow Area = 1.152 ac, 51.48% Impervious, Inflow Depth > 1.30" for 2 yr event

Inflow = 1.68 cfs @ 12.17 hrs, Volume= 0.125 af

Outflow = 0.14 cfs @ 14.02 hrs, Volume= 0.084 af, Atten= 92%, Lag= 111.0 min

Primary = 0.14 cfs @ 14.02 hrs, Volume= 0.084 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 50.02' @ 14.02 hrs Surf.Area= 1,386 sf Storage= 2,310 cf Flood Elev= 50.00' Surf.Area= 1,373 sf Storage= 2,283 cf

Plug-Flow detention time= 497.6 min calculated for 0.084 af (67% of inflow) Center-of-Mass det. time= 276.1 min (1,301.1 - 1,025.0)

Volume	Invert	Avail.Storage	Storage Description
#1	46.00'	2,710 cf	Rain Garden Envelope (Prismatic)Listed below (Recalc)
			3,911 cf Overall - 1,200 cf Embedded = 2,710 cf
#2	46.00'	120 cf	crush stone (Prismatic)Listed below (Recalc) Inside #1
			300 cf Overall x 40.0% Voids
#3	46.50'	199 cf	Bio Media (Prismatic)Listed below (Recalc) Inside #1
			798 cf Overall x 25.0% Voids
#4	47.83'	20 cf	Mulch (Prismatic)Listed below (Recalc) Inside #1
			102 cf Overall x 20.0% Voids

3,050 cf Total Available Storage

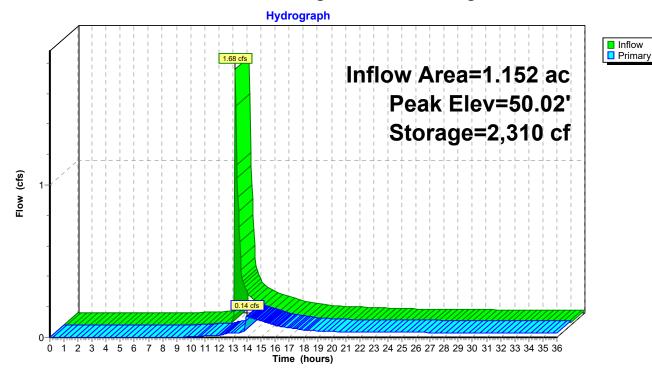
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
46.00	600	0	0
48.00	600	1,200	1,200
49.00	957	779	1,979
50.00	1,373	1,165	3,144
50.50	1,695	767	3,911
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
46.00	600	0	0
46.50	600	300	300
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
46.50	600	0	0
47.83	600	798	798
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
47.83	600	0	0
48.00	600	102	102

17211.00 Arlington HS - Proposed Conditions - NOI Resu*Type III 24-hr* 2 *yr Rainfall=3.28"* Prepared by Samiotes Engineering Printed 5/28/2020

Page 23

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Device 3	46.00'	1.020 in/hr Exfiltration over Surface area
#2	Device 3	50.00'	24.0" x 48.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#3	Primary	46.00'	15.0" Round Culvert
			L= 26.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 46.00' / 45.87' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf


Primary OutFlow Max=0.14 cfs @ 14.02 hrs HW=50.02' TW=0.00' (Dynamic Tailwater)

-3=Culvert (Passes 0.14 cfs of 8.59 cfs potential flow)

-1=Exfiltration (Exfiltration Controls 0.03 cfs)

-2=Orifice/Grate (Weir Controls 0.11 cfs @ 0.46 fps)

Pond 3P: rain garden#3 cascading

17211.00 Arlington HS - Proposed Conditions - NOI ResuType III 24-hr 2 yr Rainfall=3.28"

Prepared by Samiotes Engineering

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 24

Summary for Pond 4P: UGS-1

Inflow Area = 1.705 ac, 60.59% Impervious, Inflow Depth = 1.77" for 2 yr event

Inflow = 3.35 cfs @ 12.09 hrs, Volume= 0.251 af

Outflow = 1.36 cfs @ 12.35 hrs, Volume= 0.215 af, Atten= 59%, Lag= 15.4 min

Discarded = 0.04 cfs @ 10.25 hrs, Volume= 0.094 af

Primary = 1.32 cfs @ 12.35 hrs, Volume= 0.120 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 43.11' @ 12.35 hrs Surf.Area= 1,672 sf Storage= 4,001 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 227.2 min (1,043.4 - 816.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	39.50'	2,099 cf	29.92'W x 55.89'L x 5.50'H Field A
			9,196 cf Overall - 3,198 cf Embedded = 5,998 cf x 35.0% Voids
#2A	40.25'	3,198 cf	ADS_StormTech MC-3500 d +Capx 28 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			28 Chambers in 4 Rows
			Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf
		5,297 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	39.25'	24.0" Round Culvert L= 50.0' Ke= 0.500
	•		Inlet / Outlet Invert= 39.25' / 38.75' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 3.14 sf
#2	Device 1	43.67'	5.0' long x 4.00' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)
#3	Discarded	39.50'	1.020 in/hr Exfiltration over Surface area
#4	Device 1	42.42'	9.0" Vert. Orifice/Grate X 3 rows with 6.0" cc spacing C= 0.600

Discarded OutFlow Max=0.04 cfs @ 10.25 hrs HW=39.59' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=1.32 cfs @ 12.35 hrs HW=43.11' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 1.32 cfs of 25.56 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-4=Orifice/Grate (Orifice Controls 1.32 cfs @ 2.59 fps)

Page 25

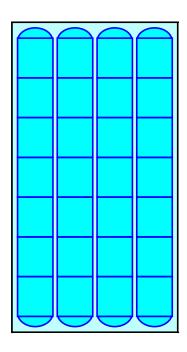
Pond 4P: UGS-1 - Chamber Wizard Field A

Chamber Model = ADS_StormTechMC-3500 d +Cap (ADS StormTech® MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing

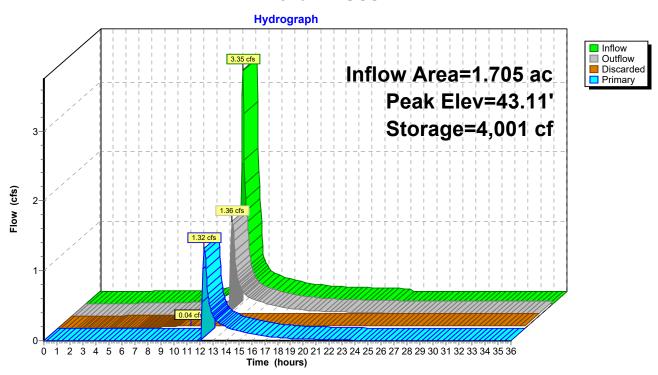
7 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 53.89' Row Length +12.0" End Stone x 2 = 55.89' Base Length


4 Rows x 77.0" Wide + 9.0" Spacing x 3 + 12.0" Side Stone x 2 = 29.92' Base Width 9.0" Base + 45.0" Chamber Height + 12.0" Cover = 5.50' Field Height

28 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 4 Rows = 3,197.9 cf Chamber Storage

9,196.2 cf Field - 3,197.9 cf Chambers = 5,998.4 cf Stone x 35.0% Voids = 2,099.4 cf Stone Storage

Chamber Storage + Stone Storage = 5,297.3 cf = 0.122 af Overall Storage Efficiency = 57.6% Overall System Size = 55.89' x 29.92' x 5.50'


28 Chambers 340.6 cy Field 222.2 cy Stone

Pond 4P: UGS-1

Page 26

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 27

Summary for Pond 5P: rain garden#1 cascading

Inflow Area = 0.725 ac, 65.66% Impervious, Inflow Depth = 1.83" for 2 yr event

Inflow = 1.52 cfs @ 12.09 hrs, Volume= 0.110 af

Outflow = 1.52 cfs @ 12.10 hrs, Volume= 0.106 af, Atten= 0%, Lag= 0.3 min

Primary = 0.01 cfs @ 12.10 hrs, Volume= 0.022 af Secondary = 1.51 cfs @ 12.10 hrs, Volume= 0.084 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 62.08' @ 12.10 hrs Surf.Area= 516 sf Storage= 594 cf

Flood Elev= 63.00' Surf.Area= 660 sf Storage= 1,132 cf

Plug-Flow detention time= 115.3 min calculated for 0.106 af (96% of inflow)

Center-of-Mass det. time= 95.3 min (920.3 - 825.0)

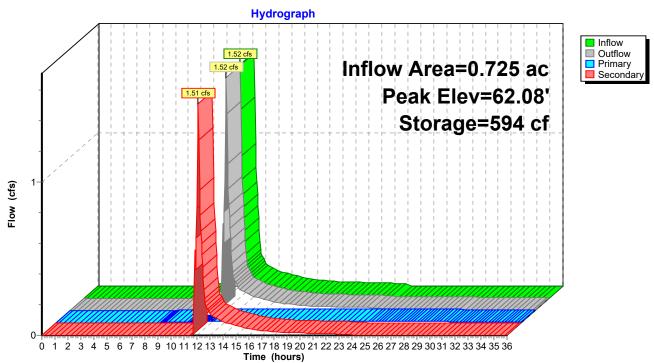
Volume	Invert	Avail.Storage	Storage Description
#1	58.50'	1,048 cf	Rain Garden Envelope (Prismatic)Listed below (Recalc)
			1,348 cf Overall - 300 cf Embedded = 1,048 cf
#2	58.50'	30 cf	crush stone (Prismatic)Listed below (Recalc) Inside #1
			75 cf Overall x 40.0% Voids
#3	59.00'	50 cf	Bio Media (Prismatic)Listed below (Recalc) Inside #1
			199 cf Overall x 25.0% Voids
#4	60.33'	5 cf	Mulch (Prismatic)Listed below (Recalc) Inside #1
			26 cf Overall x 20.0% Voids

1,132 cf Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
58.50	150	0	0
60.50	150	300	300
61.00	236	97	397
62.00	503	370	766
63.00	660	582	1,348
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
58.50	150	0	0
59.00	150	75	75
Elevation (feet) 59.00 60.33	Surf.Area	Inc.Store	Cum.Store
	(sq-ft)	(cubic-feet)	(cubic-feet)
	150	0	0
	150	199	199
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
60.33	150	0	0
60.50	150	26	26

17211.00 Arlington HS - Proposed Conditions - NOI Resu*Type III 24-hr* 2 *yr Rainfall=3.28"*Prepared by Samiotes Engineering
HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC
Page 28

Device	Routing	Invert	Outlet Devices
#1	Device 3	58.50'	1.020 in/hr Exfiltration over Surface area
#2	Secondary	62.00'	25.0' long x 3.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.92 2.97 3.07 3.32
#3	Primary	58.50'	8.0" Round Culvert L= 20.0' Ke= 0.500
	•		Inlet / Outlet Invert= 58.50' / 58.40' S= 0.0050 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.35 sf


Primary OutFlow Max=0.01 cfs @ 12.10 hrs HW=62.08' TW=54.39' (Dynamic Tailwater)

3=Culvert (Passes 0.01 cfs of 3.03 cfs potential flow)

1=Exfiltration (Exfiltration Controls 0.01 cfs)

Secondary OutFlow Max=1.50 cfs @ 12.10 hrs HW=62.08' TW=54.39' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 1.50 cfs @ 0.71 fps)

Pond 5P: rain garden#1 cascading

Page 29

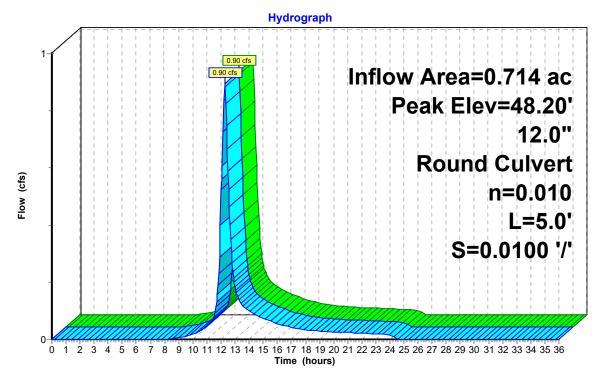
Inflow
Primary

Summary for Pond BB 01 B: BB 01 B

Inflow Area = 0.714 ac, 1.93% Impervious, Inflow Depth = 1.68" for 2 yr event

Inflow = 0.90 cfs @ 12.27 hrs, Volume= 0.100 af

Outflow = 0.90 cfs @ 12.27 hrs, Volume= 0.100 af, Atten= 0%, Lag= 0.0 min


Primary = 0.90 cfs @ 12.27 hrs, Volume= 0.100 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 48.20' @ 12.27 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	47.63'	12.0" Round Culvert L= 5.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 47.63' / 47.58' S= 0.0100'/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=0.89 cfs @ 12.27 hrs HW=48.20' TW=46.58' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.89 cfs @ 2.78 fps)

Pond BB 01 B: BB 01 B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

<u>Page 30</u>

Summary for Pond BB 01 S: BB 01 S

Inflow Area = 0.714 ac, 1.93% Impervious, Inflow Depth = 1.68" for 2 yr event

Inflow = 0.90 cfs @ 12.27 hrs, Volume= 0.100 af

Outflow = 0.16 cfs @ 13.11 hrs, Volume= 0.100 af, Atten= 82%, Lag= 50.7 min

Primary = 0.16 cfs @ 13.11 hrs, Volume= 0.100 af

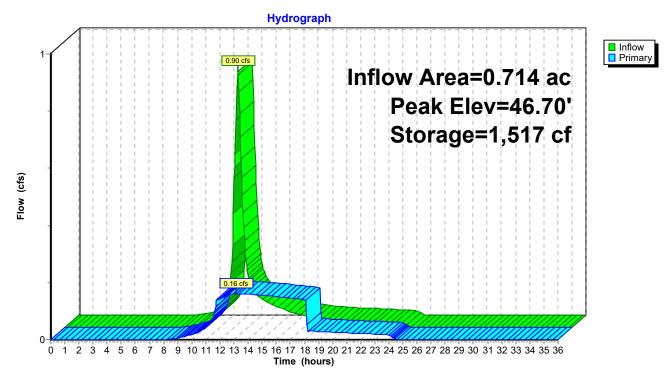
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 46.70' @ 13.11 hrs Surf.Area= 0 sf Storage= 1,517 cf

Plug-Flow detention time= 79.1 min calculated for 0.100 af (100% of inflow)

Center-of-Mass det. time= 78.6 min (918.5 - 839.9)

Volume	Inv	ert Ava	il.Storage	Storage Description
#1	45.	65'	8,017 cf	Custom Stage DataListed below
Elevatio		Inc.Store cubic-feet)	_	m.Store bic-feet)
45.6	35	0		0
46.4	18	16		16
46.9	98	3,378		3,394
47.4	18	3,405		6,799
47.9	98	1,218		8,017
Device	Routing	In	vert Outl	utlet Devices
#1	Primary	45	5.65' 2.5"	5" Vert. Orifice/Grate C= 0.600
#2	Primary	46	6.98' 4.0"	" Vert. Orifice/Grate C= 0.600
#3	Primary	46	6.98' 5.0"	" Vert. Orifice/Grate C= 0.600

Primary OutFlow Max=0.16 cfs @ 13.11 hrs HW=46.70' TW=45.46' (Dynamic Tailwater)


-1=Orifice/Grate (Orifice Controls 0.16 cfs @ 4.69 fps)

-2=Orifice/Grate (Controls 0.00 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Page 31

Pond BB 01 S: BB 01 S

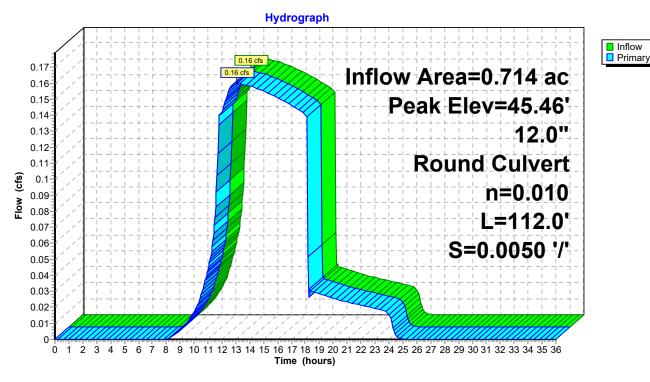
Page 32

Summary for Pond BB 06 B: BB 06 B

Inflow Area = 0.714 ac, 1.93% Impervious, Inflow Depth = 1.68" for 2 yr event

Inflow = 0.16 cfs @ 13.11 hrs, Volume= 0.100 af

Outflow = 0.16 cfs @ 13.11 hrs, Volume= 0.100 af, Atten= 0%, Lag= 0.0 min


Primary = 0.16 cfs @ 13.11 hrs, Volume= 0.100 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 45.46' @ 13.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	45.25'	12.0" Round Culvert
			L= 112.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 45.25' / 44.69' S= 0.0050 '/' Cc= 0.900
			n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=0.16 cfs @ 13.11 hrs HW=45.46' TW=44.71' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.16 cfs @ 2.09 fps)

Pond BB 06 B: BB 06 B

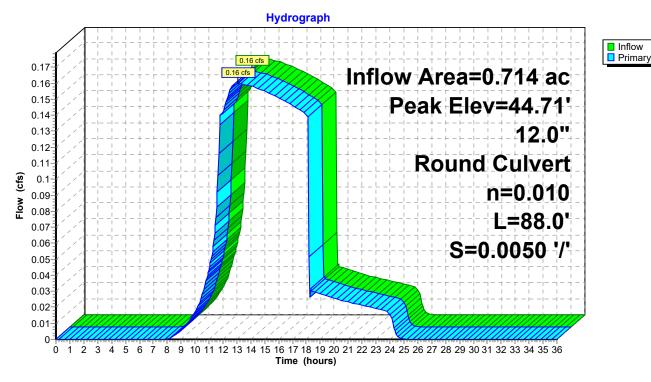
Page 33

Summary for Pond BB 07 B: BB 07 B

Inflow Area = 0.714 ac, 1.93% Impervious, Inflow Depth = 1.68" for 2 yr event

Inflow = 0.16 cfs @ 13.11 hrs, Volume= 0.100 af

Outflow = 0.16 cfs @ 13.11 hrs, Volume= 0.100 af, Atten= 0%, Lag= 0.0 min


Primary = 0.16 cfs @ 13.11 hrs, Volume= 0.100 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 44.71' @ 13.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	44.50'	12.0" Round Culvert
			L= 88.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 44.50' / 44.06' S= 0.0050 '/' Cc= 0.900
			n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=0.16 cfs @ 13.11 hrs HW=44.71' TW=44.09' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.16 cfs @ 2.07 fps)

Pond BB 07 B: BB 07 B

Page 34

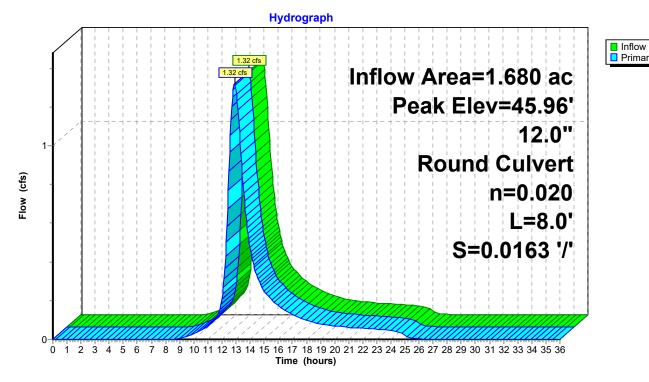
Primary

Summary for Pond BB 11 B: BB 11 B

Inflow Area = 1.680 ac, 0.00% Impervious, Inflow Depth = 1.83" for 2 yr event

Inflow 1.32 cfs @ 12.90 hrs, Volume= 0.256 af

Outflow 1.32 cfs @ 12.90 hrs, Volume= 0.256 af, Atten= 0%, Lag= 0.0 min


Primary 1.32 cfs @ 12.90 hrs, Volume= 0.256 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 45.96' @ 12.90 hrs

Device Routing Invert Outlet Devices	
#1 Primary 45.25' 12.0" Round Culvert L= 8.0' CPP, square edg	5' / 45.12' S= 0.0163 '/' Cc= 0.900

Primary OutFlow Max=1.32 cfs @ 12.90 hrs HW=45.96' TW=45.04' (Dynamic Tailwater) 1=Culvert (Barrel Controls 1.32 cfs @ 3.10 fps)

Pond BB 11 B: BB 11 B

<u>Page 35</u>

Summary for Pond BB 11 S: BB 11 S

Inflow Area = 1.680 ac, 0.00% Impervious, Inflow Depth = 1.83" for 2 yr event

Inflow = 1.32 cfs @ 12.90 hrs, Volume= 0.256 af

Outflow = 1.04 cfs @ 13.27 hrs, Volume= 0.256 af, Atten= 21%, Lag= 22.7 min

Primary = 1.04 cfs @ 13.27 hrs, Volume= 0.256 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 45.08' @ 13.27 hrs Surf.Area= 0 sf Storage= 715 cf

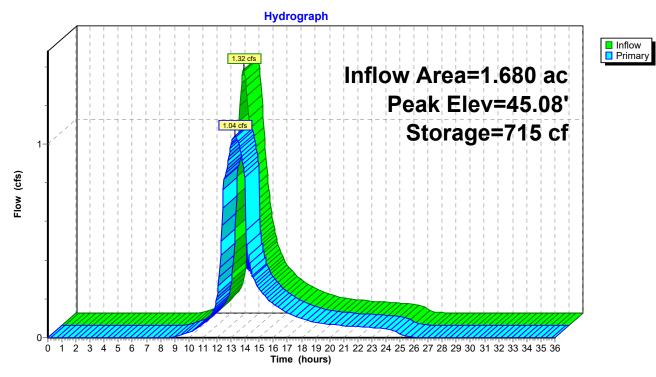
Plug-Flow detention time= 3.9 min calculated for 0.255 af (100% of inflow)

Center-of-Mass det. time= 4.0 min (885.4 - 881.4)

Volume	Inve	rt Avai	I.Storage	Storage Description
#1	44.1	4'	7,432 cf	Custom Stage DataListed below
Elevatio	nn.	Inc.Store	Cum	n.Store
(fee		ubic-feet)		ic-feet)
44.1	, ,	0	(000)	0
44.9		16		16
45.4	17	3,131		3,147
45.9	97	3,156		6,303
46.4	17	1,129		7,432
Device	Routing	In	vert Outl	tlet Devices
#1	Primary	44		" Vert. Orifice/Grate C= 0.600

D01100	rtouting	1117011	Gallot Borioco	
#1	Primary	44.14'	2.5" Vert. Orifice/Grate C= 0.600	
#2	Primary	44.47'	8.0" Vert. Orifice/Grate C= 0.600	
#3	Primary	45.47'	6.0" Vert. Orifice/Grate C= 0.600	

Primary OutFlow Max=1.04 cfs @ 13.27 hrs HW=45.08' TW=44.09' (Dynamic Tailwater)


1=Orifice/Grate (Orifice Controls 0.15 cfs @ 4.41 fps)

-2=Orifice/Grate (Orifice Controls 0.89 cfs @ 2.66 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

Page 36

Pond BB 11 S: BB 11 S

Page 37

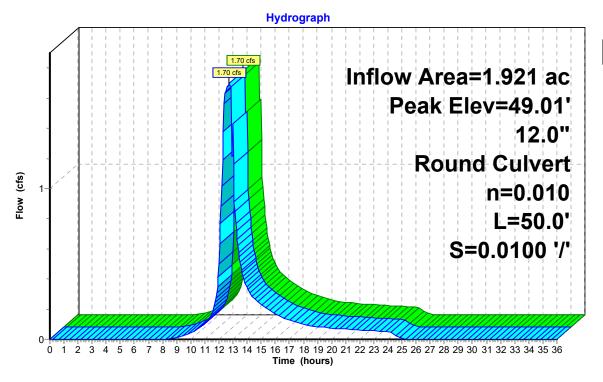
☐ Inflow☐ Primary

Summary for Pond PR-4: SB 01 DMH

Inflow Area = 1.921 ac, 1.31% Impervious, Inflow Depth = 1.79" for 2 yr event

Inflow = 1.70 cfs @ 12.73 hrs, Volume= 0.287 af

Outflow = 1.70 cfs @ 12.73 hrs, Volume= 0.287 af, Atten= 0%, Lag= 0.0 min


Primary = 1.70 cfs @ 12.73 hrs, Volume= 0.287 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 49.01' @ 12.73 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	48.30'	12.0" Round Culvert L= 50.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 48.30' / 47.80' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.70 cfs @ 12.73 hrs HW=49.01' TW=0.00' (Dynamic Tailwater) 1=Culvert (Inlet Controls 1.70 cfs @ 2.86 fps)

Pond PR-4: SB 01 DMH

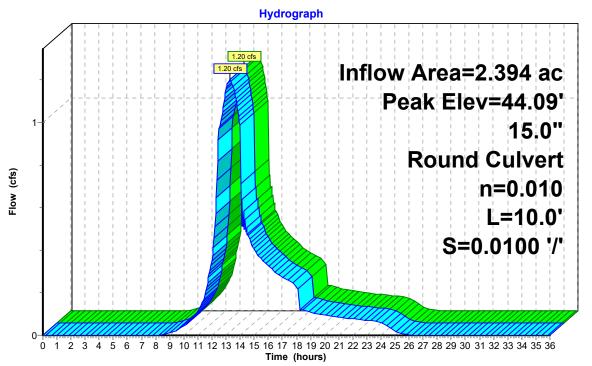
Page 38

Summary for Pond PR-5: DMH 1

Inflow Area = 2.394 ac, 0.58% Impervious, Inflow Depth = 1.78" for 2 yr event

Inflow = 1.20 cfs @ 13.27 hrs, Volume= 0.356 af

Outflow = 1.20 cfs @ 13.27 hrs, Volume= 0.356 af, Atten= 0%, Lag= 0.0 min


Primary = 1.20 cfs @ 13.27 hrs, Volume= 0.356 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 44.09' @ 13.27 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	43.50'	15.0" Round Culvert L= 10.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 43.50' / 43.40' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 1.23 sf

Primary OutFlow Max=1.20 cfs @ 13.27 hrs HW=44.09' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 1.20 cfs @ 3.07 fps)

Pond PR-5: DMH 1

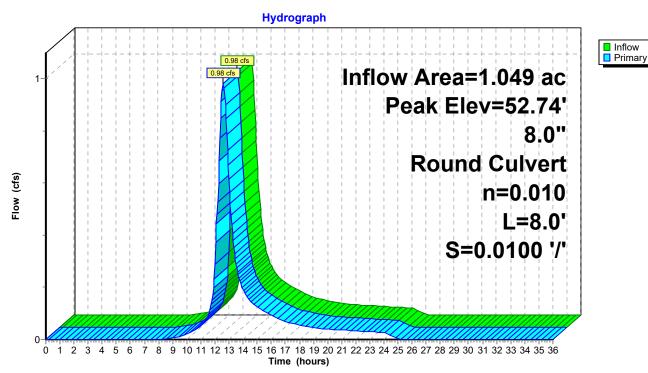
Page 39

Summary for Pond SB 01 B: SB 01 B

Inflow Area = 1.049 ac, 2.41% Impervious, Inflow Depth = 1.77" for 2 yr event

Inflow = 0.98 cfs @ 12.58 hrs, Volume= 0.155 af

Outflow = 0.98 cfs @ 12.58 hrs, Volume= 0.155 af, Atten= 0%, Lag= 0.0 min


Primary = 0.98 cfs @ 12.58 hrs, Volume= 0.155 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 52.74' @ 12.58 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	52.00'	8.0" Round Culvert L= 8.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 52.00' / 51.92' S= 0.0100 '/' Cc= 0.900 n= 0.010. Flow Area= 0.35 sf

Primary OutFlow Max=0.98 cfs @ 12.58 hrs HW=52.74' TW=51.49' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.98 cfs @ 3.16 fps)

Pond SB 01 B: SB 01 B

Prepared by Samiotes Engineering

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

<u>Page 40</u>

Summary for Pond SB 01 S: SB 01 S

Inflow Area = 1.049 ac, 2.41% Impervious, Inflow Depth = 1.77" for 2 yr event

Inflow = 0.98 cfs @ 12.58 hrs, Volume= 0.155 af

Outflow = 0.86 cfs @ 12.79 hrs, Volume= 0.155 af, Atten= 12%, Lag= 12.3 min

Primary = 0.86 cfs @ 12.79 hrs, Volume= 0.155 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 51.50' @ 12.79 hrs Surf.Area= 0 sf Storage= 157 cf

Plug-Flow detention time= 1.5 min calculated for 0.155 af (100% of inflow)

Center-of-Mass det. time= 1.1 min (860.0 - 858.9)

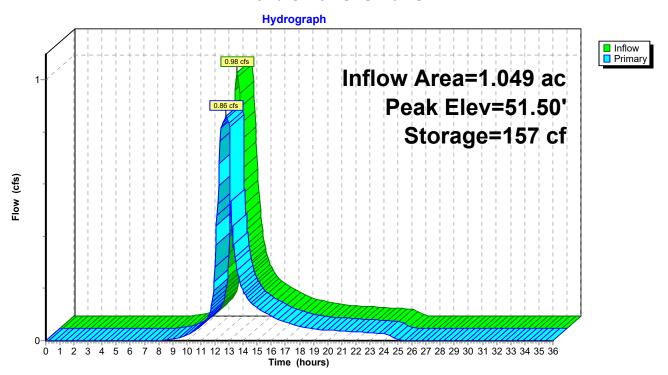
Volume	In	vert Ava	il.Storage	Storage Description
#1	50	.64'	3,084 cf	Custom Stage DataListed below
Elevation	on	Inc.Store	Cun	m.Store
(fee	et)	(cubic-feet)	(cubi	pic-feet)
50.6	64	0		0
51.4	17	16		16
51.9	97	2,170		2,186
52.4	17	898		3,084
Device	Routing	ı lr	vert Out	tlet Devices
#1	Primary	, 50	0.64' 4.0'	" Vert. Orifice/Grate C= 0.600
#2	Primary	, 50) 97' 6.0'	"Vert. Orifice/Grate C= 0.600

Primary OutFlow Max=0.86 cfs @ 12.79 hrs HW=51.50' TW=50.49' (Dynamic Tailwater)

51.47' **8.0" Vert. Orifice/Grate** C= 0.600

1=Orifice/Grate (Orifice Controls 0.35 cfs @ 4.02 fps)

Primary


#3

—2=Orifice/Grate (Orifice Controls 0.50 cfs @ 2.56 fps)

-3=Orifice/Grate (Orifice Controls 0.00 cfs @ 0.61 fps)

Pond SB 01 S: SB 01 S

Page 41

Page 42

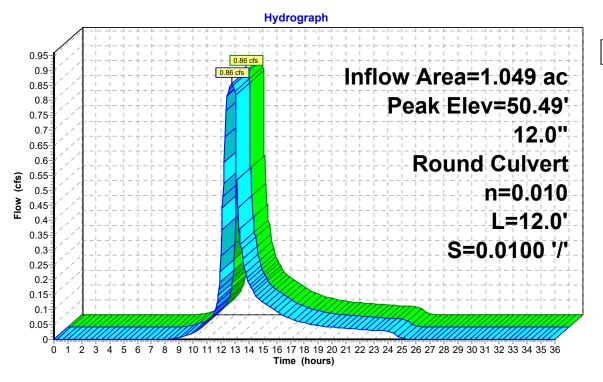
☐ Inflow☐ Primary

Summary for Pond SB 02 B: SB 02 B

Inflow Area = 1.049 ac, 2.41% Impervious, Inflow Depth = 1.77" for 2 yr event

Inflow = 0.86 cfs @ 12.79 hrs, Volume= 0.155 af

Outflow = 0.86 cfs @ 12.79 hrs, Volume= 0.155 af, Atten= 0%, Lag= 0.0 min


Primary = 0.86 cfs @ 12.79 hrs, Volume= 0.155 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 50.49' @ 12.79 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	49.97'	12.0" Round Culvert
			L= 12.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 49.97' / 49.85' S= 0.0100 '/' Cc= 0.900
			n= 0.010 Flow Area= 0.79 sf

Primary OutFlow Max=0.86 cfs @ 12.79 hrs HW=50.49' TW=49.01' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.86 cfs @ 3.01 fps)

Pond SB 02 B: SB 02 B

Page 43

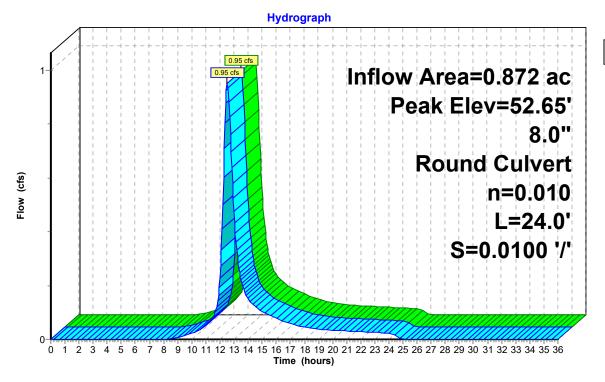
Inflow
Primary

Summary for Pond SB 11 B: SB 11 B

Inflow Area = 0.872 ac, 0.00% Impervious, Inflow Depth = 1.83" for 2 yr event

Inflow = 0.95 cfs @ 12.52 hrs, Volume= 0.133 af

Outflow = 0.95 cfs @ 12.52 hrs, Volume= 0.133 af, Atten= 0%, Lag= 0.0 min


Primary = 0.95 cfs @ 12.52 hrs, Volume= 0.133 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 52.65' @ 12.52 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	52.00'	8.0" Round Culvert L= 24.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 52.00' / 51.76' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 0.35 sf

Primary OutFlow Max=0.95 cfs @ 12.52 hrs HW=52.65' TW=51.68' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.95 cfs @ 2.74 fps)

Pond SB 11 B: SB 11 B

Prepared by Samiotes Engineering

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 44

Summary for Pond SB 11 S: SB 11 S

Inflow Area = 0.872 ac, 0.00% Impervious, Inflow Depth = 1.83" for 2 yr event

Inflow = 0.95 cfs @ 12.52 hrs, Volume= 0.133 af

Outflow = 0.84 cfs @ 12.68 hrs, Volume= 0.133 af, Atten= 11%, Lag= 9.9 min

Primary = 0.84 cfs @ 12.68 hrs, Volume= 0.133 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

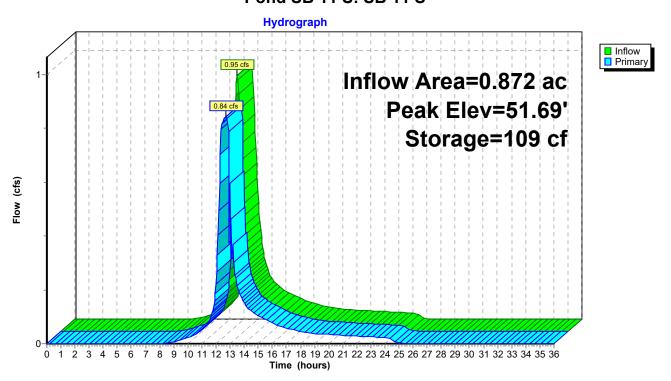
Peak Elev= 51.69' @ 12.68 hrs Surf.Area= 0 sf Storage= 109 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 0.9 min (855.0 - 854.1)

Volume	Invert	Avail.Stor	rage Storag	e Description
#1	50.84	2,89	2 cf Custo	m Stage DataListed below
Elevatio		nc.Store bic-feet)	Cum.Store (cubic-feet)	
50.8	34	0	0	
51.6	67	16	16	
52.1	7	2,035	2,051	
52.6	67	841	2,892	
Device	Routing	Invert	Outlet Device	ces
#1	Primary	50.84'	4.0" Vert. O	Prifice/Grate C= 0.600
#2	Primary	51.17'	6.0" Vert. O	Prifice/Grate C= 0.600
#3	Primary	51.67'	6.0" Vert. O	orifice/Grate C= 0.600

Primary OutFlow Max=0.84 cfs @ 12.68 hrs HW=51.69' TW=50.64' (Dynamic Tailwater)


-1=Orifice/Grate (Orifice Controls 0.35 cfs @ 3.99 fps)

-2=Orifice/Grate (Orifice Controls 0.49 cfs @ 2.51 fps)

-3=Orifice/Grate (Orifice Controls 0.00 cfs @ 0.51 fps)

Pond SB 11 S: SB 11 S

Page 45

Page 46

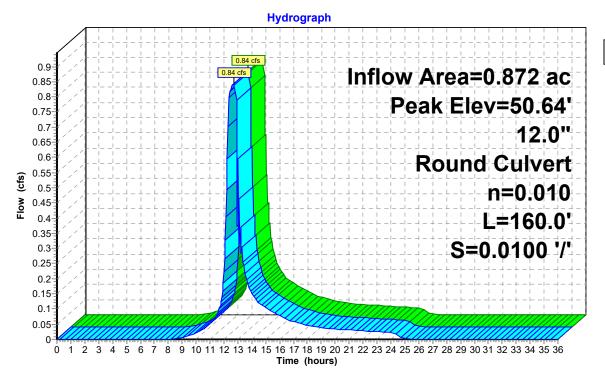
☐ Inflow☐ Primary

Summary for Pond SB 12 B: SB 12 B

Inflow Area = 0.872 ac, 0.00% Impervious, Inflow Depth = 1.83" for 2 yr event

Inflow = 0.84 cfs @ 12.68 hrs, Volume= 0.133 af

Outflow = 0.84 cfs @ 12.68 hrs, Volume= 0.133 af, Atten= 0%, Lag= 0.0 min


Primary = 0.84 cfs @ 12.68 hrs, Volume= 0.133 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 50.64' @ 12.68 hrs

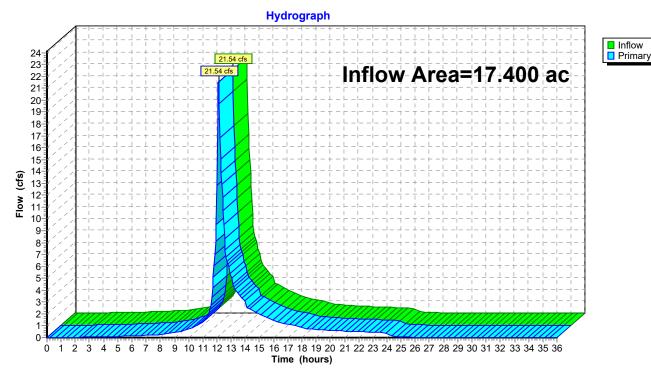
Device	Routing	Invert	Outlet Devices
#1	Primary	50.17'	12.0" Round Culvert
			L= 160.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 50.17' / 48.57' S= 0.0100 '/' Cc= 0.900
			n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=0.84 cfs @ 12.68 hrs HW=50.64' TW=49.01' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.84 cfs @ 2.33 fps)

Pond SB 12 B: SB 12 B

Page 47

Summary for Link POA: POA


Inflow Area = 17.400 ac, 49.60% Impervious, Inflow Depth > 1.77" for 2 yr event

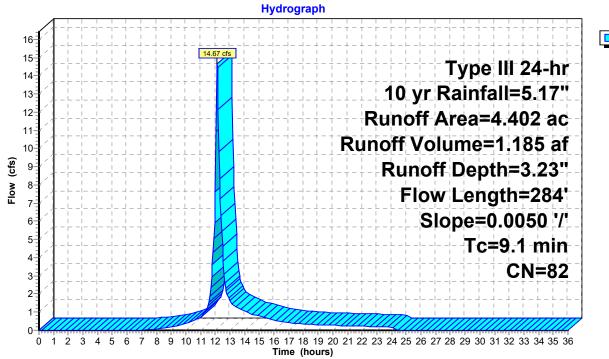
Inflow = 21.54 cfs @ 12.11 hrs, Volume= 2.564 af

Primary = 21.54 cfs @ 12.11 hrs, Volume= 2.564 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Link POA: POA

Page 48


Summary for Subcatchment PR-1: PR-1

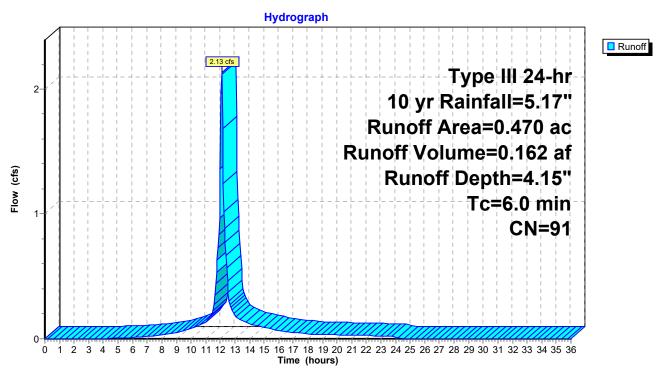
Runoff = 14.67 cfs @ 12.13 hrs, Volume= 1.185 af, Depth= 3.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

_	Area (ac) CN Description							
	1.	892 6	61 >75°	% Grass c	over, Good	, HSG B		
_	2.	510	98 Pave	ed parking	, HSG B			
	4.	402 8	32 Weig	ghted Aver	age			
	1.	892	42.9	8% Pervio	us Area			
	2.	510	57.0	2% Imperv	ious Area			
					_			
	Tc	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	1.2	50	0.0050	0.69		Sheet Flow, A-B		
						Smooth surfaces n= 0.011 P2= 3.20"		
	7.9	234	0.0050	0.49		Shallow Concentrated Flow, B-C		
_						Short Grass Pasture Kv= 7.0 fps		
	9 1	284	Total	·				

Subcatchment PR-1: PR-1

Page 49


Summary for Subcatchment PR-1A: PR-1A

Runoff = 2.13 cfs @ 12.09 hrs, Volume= 0.162 af, Depth= 4.15"

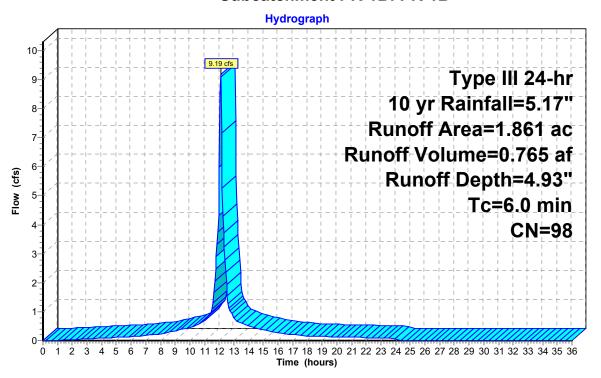
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

/	Area ((ac)	CN	Desc	Description							
	0.	090	61	>75%	6 Grass co	over, Good	, HSG B					
	0.	380	98	Pave	ed parking,	HSG B						
	0.470 91 Weighted Average											
	0.090 19.15% Pervious Area											
	0.380			80.8	5% Imperv	ious Area						
	_			. .			B					
		Lengt		Slope	Velocity	Capacity	Description					
<u>(r</u>	(min) (feet) (ft/ft) (ft/sec) (cfs)			(ft/sec)	(cfs)							
	6.0						Direct Entry,					

Subcatchment PR-1A: PR-1A

Page 50

Runoff


Summary for Subcatchment PR-1B: PR-1B

Runoff = 9.19 cfs @ 12.09 hrs, Volume= 0.765 af, Depth= 4.93"

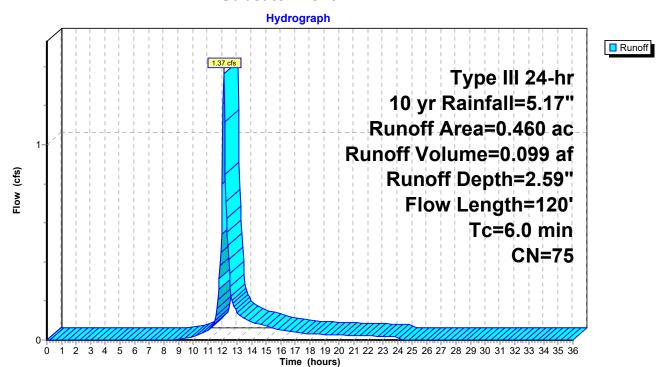
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

	Area	(ac)	CN	Desc	cription		
	1.861 98 Roofs, HSG B						
1.861 100.00% Impervious Area							
	Тс	Leng	th	Slope	Velocity	Canacity	Description
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Beschiption
· ·	6.0						Direct Entry,

Subcatchment PR-1B: PR-1B

Page 51

Summary for Subcatchment PR-1C: PR-1C


Runoff = 1.37 cfs @ 12.09 hrs, Volume= 0.099 af, Depth= 2.59"

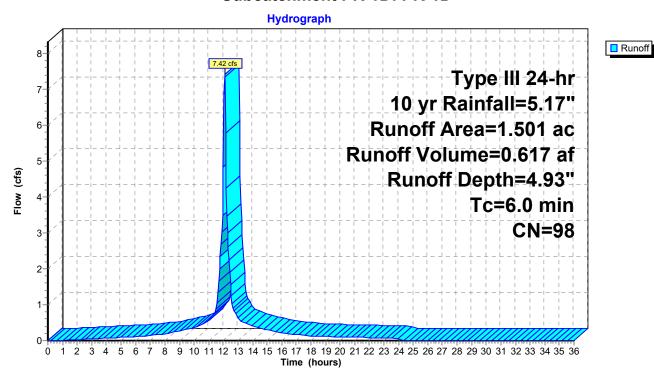
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

_	Area	(ac) C	N Des	cription					
	0.								
0.260 61 >75% Grass cover, Good, HSG B									
0.180 98 Paved parking, HSG B									
	0.	460 7	75 Weig	hted Aver	age				
	0.	280	60.8	7% Pervio	us Area				
	0.	180	39.1	3% Imperv	/ious Area				
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	3.6	20	0.0700	0.09		Sheet Flow, 20' SF			
						Woods: Light underbrush n= 0.400 P2= 3.20"			
	1.9	40	0.5000	0.35		Sheet Flow, 30' SF			
						Grass: Dense n= 0.240 P2= 3.20"			
	0.1	12	0.0100	1.61		Shallow Concentrated Flow, 12' SCF			
						Unpaved Kv= 16.1 fps			
	0.2	48	0.0400	4.06		Shallow Concentrated Flow, 48' SCF			
_						Paved Kv= 20.3 fps			
		400				T 00 :			

5.8 120 Total, Increased to minimum Tc = 6.0 min

Subcatchment PR-1C: PR-1C

Page 52


Summary for Subcatchment PR-1D: PR-1D

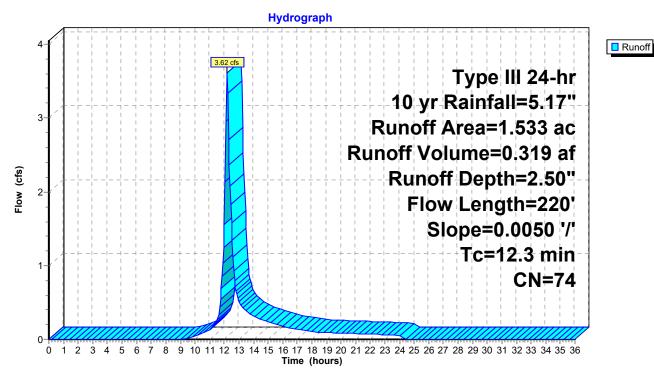
Runoff = 7.42 cfs @ 12.09 hrs, Volume= 0.617 af, Depth= 4.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

_	Area	(ac)	CN	Desc	cription				
	1.	.501	98	Roof	s, HSG B				
	1.501 100.00% Impervious Area								
_	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	6.0						Direct Entry,		

Subcatchment PR-1D: PR-1D

Page 53


Summary for Subcatchment PR-1E: PR-1E

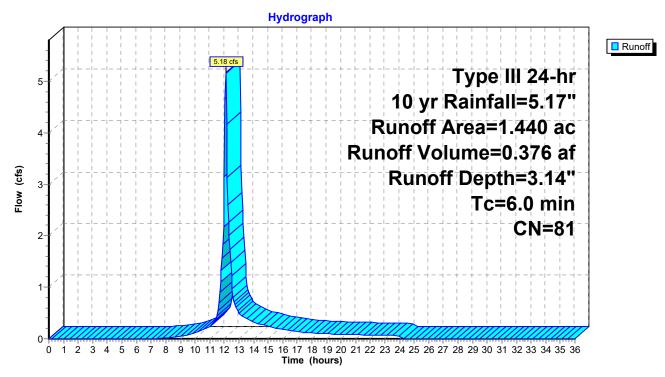
Runoff = 3.62 cfs @ 12.17 hrs, Volume= 0.319 af, Depth= 2.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

Area	(ac) C	N Des	cription		
1.	000	31 >75°	% Grass co	over, Good	, HSG B
 0.	533	98 Pave	ed parking	, HSG B	
1.	533	74 Weig	ghted Aver	age	
1.	000	65.2	3% Pervio	us Area	
0.	533	34.7	7% Imper	/ious Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
9.8	50	0.0050	0.09		Sheet Flow, 50' SF
2.5	170	0.0050	1.14		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, 170' SCF Unpaved Kv= 16.1 fps
12.3	220	Total			

Subcatchment PR-1E: PR-1E

Page 54


Summary for Subcatchment PR-2: PR-2

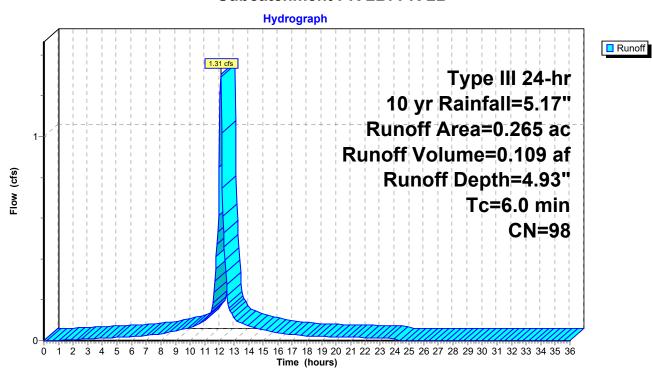
Runoff = 5.18 cfs @ 12.09 hrs, Volume= 0.376 af, Depth= 3.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

Area	(ac)	CN	Desc	Description				
0.	.672	61	>75%	√ Grass co	over, Good	, HSG B		
0.	.768	98	Pave	ed parking	HSG B			
1.	440	81	Weig	hted Aver	age			
0.	.672		46.6	7% Pervio	us Area			
0.	768		53.3	3% Imperv	ious Area			
Тс	Leng	th :	Slope	Velocity	Capacity	Description		
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)			
6.0						Direct Entry,		

Subcatchment PR-2: PR-2

Page 55


Summary for Subcatchment PR-2B: PR-2B

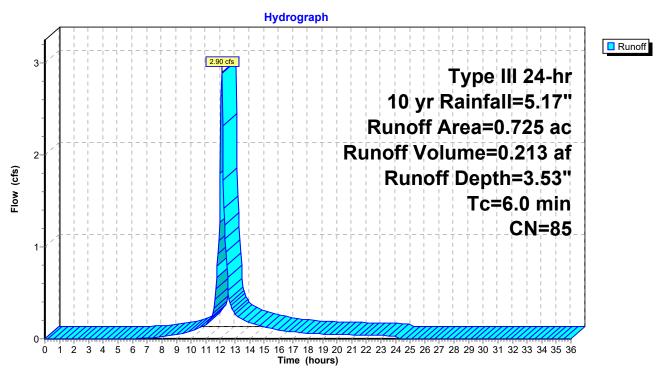
Runoff = 1.31 cfs @ 12.09 hrs, Volume= 0.109 af, Depth= 4.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

Ar	ea ((ac)	CN	Desc	cription		
	0.2	265	98	Roof	s, HSG B		
	0.2	265		100.	00% Impe	rvious Area	1
(mi		Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6	6.0						Direct Entry,

Subcatchment PR-2B: PR-2B

Page 56


Summary for Subcatchment PR-3A: PR-3A

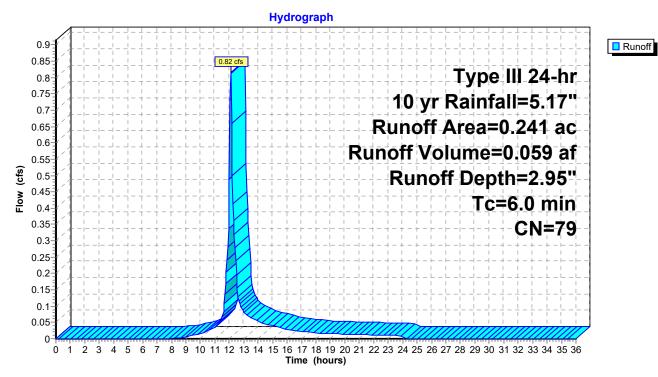
Runoff = 2.90 cfs @ 12.09 hrs, Volume= 0.213 af, Depth= 3.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

Are	a (ac)	CN	Desc	Description					
	0.249	61	>759	% Grass co	over, Good	d, HSG B			
	0.476 98 Paved parking, HSG B				, HSG B				
	0.725	85	Weig	ghted Aver	age				
	0.249		34.3	4% Pervio	us Area				
	0.476		65.6	6% Imper	∕ious Area				
Т	c Len	gth	Slope	Velocity	Capacity	Description			
(min	•	et)	(ft/ft)	(ft/sec)	(cfs)	<u> </u>			
6.)					Direct Entry,			

Subcatchment PR-3A: PR-3A

Page 57


Summary for Subcatchment PR-3B: PR-3B

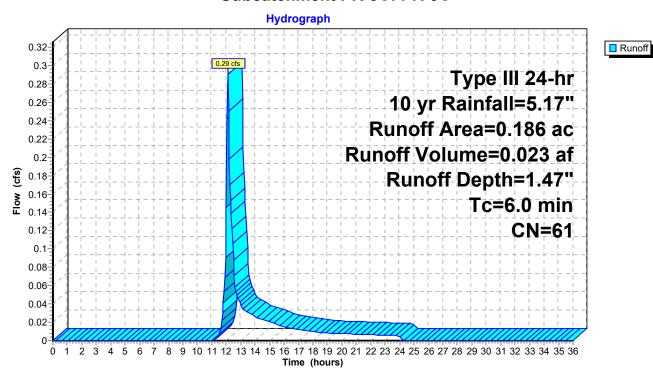
Runoff = 0.82 cfs @ 12.09 hrs, Volume= 0.059 af, Depth= 2.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

Area	(ac)	CN	Desc	Description				
0.	124	61	>75%	√ Grass co	over, Good	, HSG B		
0.	0.117 98 Paved parking, HSG B							
0.	241	79	Weig	hted Aver	age			
0.	124		51.4	5% Pervio	us Area			
0.	117		48.5	5% Imperv	ious Area			
Тс	Leng	th :	Slope	Velocity	Capacity	Description		
(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)			
6.0						Direct Entry,		

Subcatchment PR-3B: PR-3B

Page 58


Summary for Subcatchment PR-3C: PR-3C

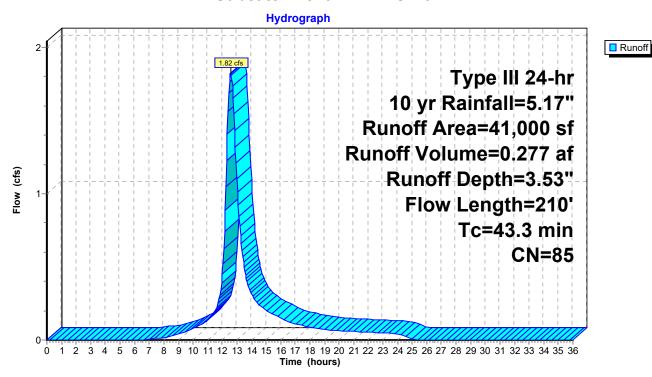
Runoff = 0.29 cfs @ 12.10 hrs, Volume= 0.023 af, Depth= 1.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

Ar	ea (ac)	CN	Desc	cription		
	0.	186	61	>75%	% Grass co	over, Good	I, HSG B
	0.	186		100.0	00% Pervi	ous Area	
- (mi	Tc in)	Lengt		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6	6.0						Direct Entry,

Subcatchment PR-3C: PR-3C

Page 59


Summary for Subcatchment PR-4A: SB 01 A

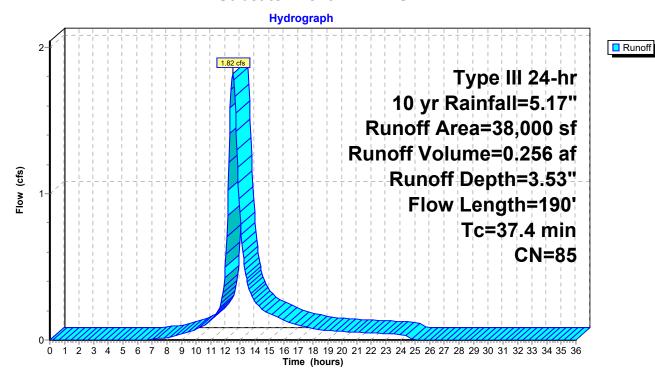
Runoff = 1.82 cfs @ 12.58 hrs, Volume= 0.277 af, Depth= 3.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

	Α	rea (sf)	CN I	Description		
*		41,000	85	SYNTHETI	C TURF- P	AD- LINER
		41,000	•	100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	39.6	110	0.0055	0.05	, ,	Sheet Flow, Through Turf Section
	3.7	100	0.0001	0.45	0.16	Grass: Bermuda n= 0.410 P2= 3.20" Pipe Channel, TRENCH DRAIN LEVEL 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.010
	43.3	210	Total			

Subcatchment PR-4A: SB 01 A

Page 60


Summary for Subcatchment PR-4B: SB 11 A

Runoff = 1.82 cfs @ 12.51 hrs, Volume= 0.256 af, Depth= 3.53"

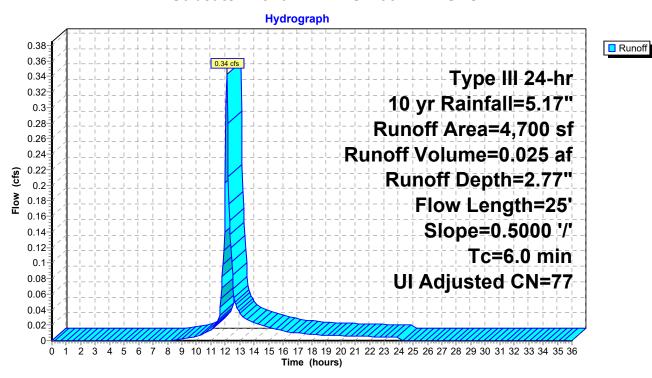
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

	Α	rea (sf)	CN [Description		
*		38,000	85 5	YNTHETI	C TURF- P	AD- LINER
	38,000		1	00.00% P	ervious Are	ea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	33.7	90	0.0055	0.04		Sheet Flow, Through Turf Section
	3.7	100	0.0001	0.45	0.16	Grass: Bermuda n= 0.410 P2= 3.20" Pipe Channel, TRENCH DRAIN LEVEL 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.010
	37 4	190	Total	•	•	

Subcatchment PR-4B: SB 11 A

Page 61

Summary for Subcatchment PR-4C: SB 00 DPW SLOPE


Runoff = 0.34 cfs @ 12.09 hrs, Volume= 0.025 af, Depth= 2.77"

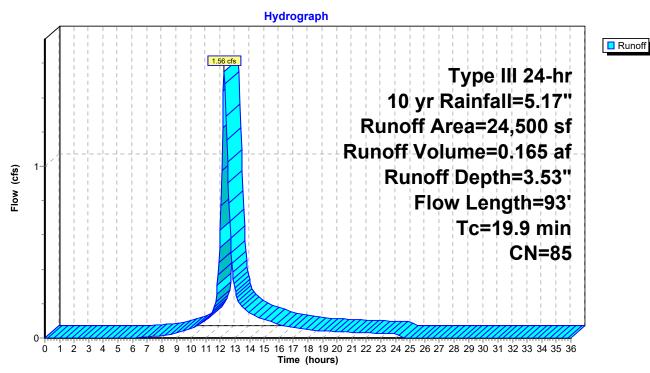
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

1,100 98 Unconnected pavement, HSG A 3,600 74 >75% Grass cover, Good, HSG C	
3 600 74 >75% Grass cover Good HSG C	
4,700 80 77 Weighted Average, UI Adjusted	
3,600 76.60% Pervious Area	
1,100 23.40% Impervious Area	
1,100 100.00% Unconnected	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
1.3 25 0.5000 0.32 Sheet Flow, SLOPING LAND	
Grass: Dense n= 0.240 P2= 3.20"	

1.3 25 Total, Increased to minimum Tc = 6.0 min

Subcatchment PR-4C: SB 00 DPW SLOPE

Page 62


Summary for Subcatchment PR-5A: BB 01 A

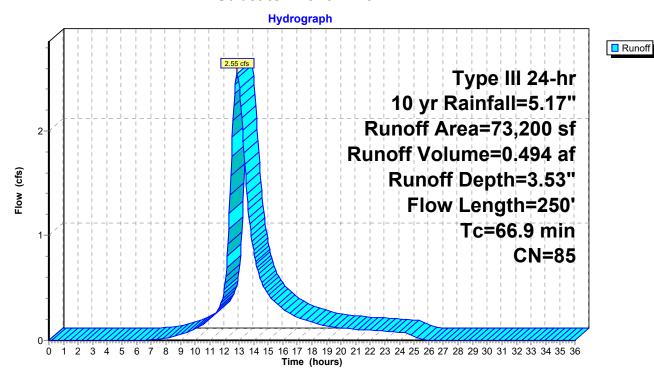
Runoff = 1.56 cfs @ 12.27 hrs, Volume= 0.165 af, Depth= 3.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

	Α	rea (sf)	CN	Description		
*		24,500	85	SYNTHETI	C TURF- P	AD- LINER
		24,500		100.00% P	ervious Are	ea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	18.2	46	0.0067	0.04		Sheet Flow, Through Turf Section
	1.7	47	0.0001	0.45	0.16	Grass: Bermuda n= 0.410 P2= 3.20" Pipe Channel, TRENCH DRAIN LEVEL 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.010
	19.9	93	Total			

Subcatchment PR-5A: BB 01 A

Page 63


Summary for Subcatchment PR-5B: BB 11 A

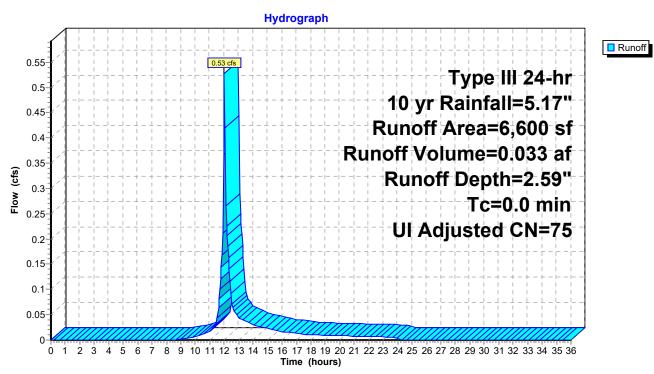
Runoff = 2.55 cfs @ 12.87 hrs, Volume= 0.494 af, Depth= 3.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

	Α	rea (sf)	CN I	Description		
*		73,200	85	SYNTHETI	C TURF- P	AD- LINER
		73,200		100.00% P	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
	22.1	53	0.0055	0.04		Sheet Flow, Through Turf Section
	43.1	150	0.0083	0.06		Grass: Bermuda n= 0.410 P2= 3.20" Sheet Flow, SYNTHETIC TURF Grass: Bermuda n= 0.410 P2= 3.20"
	1.7	47	0.0001	0.45	0.16	Pipe Channel, TRENCH DRAIN LEVEL 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.010
	66.9	250	Total			

Subcatchment PR-5B: BB 11 A

Page 64


Summary for Subcatchment PR-5C: SLOPE

Runoff = 0.53 cfs @ 12.00 hrs, Volume= 0.033 af, Depth= 2.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.17"

Area (sf)	CN	Adj	Description
600	98		Unconnected roofs, HSG C
6,000	74		>75% Grass cover, Good, HSG C
6,600	76	75	Weighted Average, UI Adjusted
6,000			90.91% Pervious Area
600			9.09% Impervious Area
600			100.00% Unconnected

Subcatchment PR-5C: SLOPE

Prepared by Samiotes Engineering

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 65

Summary for Pond 2P: rain garden#2 cascading

Inflow Area = 0.966 ac, 61.39% Impervious, Inflow Depth > 3.33" for 10 yr event

Inflow = 3.72 cfs @ 12.09 hrs, Volume= 0.268 af

Outflow = 3.71 cfs @ 12.10 hrs, Volume= 0.251 af, Atten= 0%, Lag= 0.5 min

Primary = 0.03 cfs @ 12.10 hrs, Volume = 0.047 afSecondary = 3.69 cfs @ 12.10 hrs, Volume = 0.204 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 54.65' @ 12.10 hrs Surf.Area= 1,107 sf Storage= 1,363 cf Flood Elev= 55.00' Surf.Area= 1,326 sf Storage= 1,784 cf

Plug-Flow detention time= 109.2 min calculated for 0.251 af (94% of inflow)

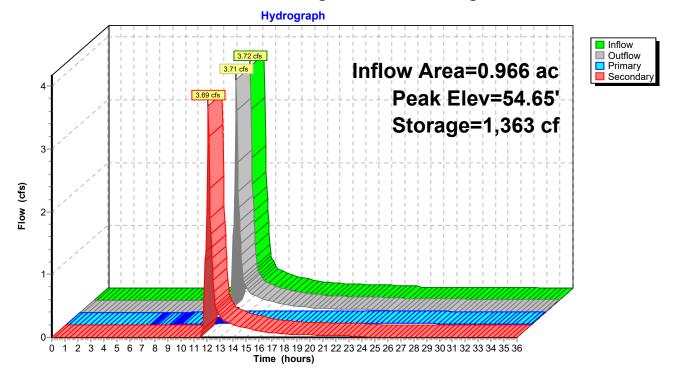
Center-of-Mass det. time= 61.3 min (913.4 - 852.0)

Volume	Invert	Avail.Storage	Storage Description
#1	51.00'	1,557 cf	Rain Garden Envelope (Prismatic)Listed below (Recalc)
			2,357 cf Overall - 800 cf Embedded = 1,557 cf
#2	51.00'	80 cf	crush stone (Prismatic)Listed below (Recalc) Inside #1
			200 cf Overall x 40.0% Voids
#3	51.50'	133 cf	Bio Media (Prismatic)Listed below (Recalc) Inside #1
			532 cf Overall x 25.0% Voids
#4	52.83'	14 cf	Mulch (Prismatic)Listed below (Recalc) Inside #1
			68 cf Overall x 20.0% Voids

1,784 cf Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
51.00	400	0	0
53.00	400	800	800
54.00	694	547	1,347
55.00	1,326	1,010	2,357
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
51.00	400	0	0
51.50	400	200	200
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
51.50	400	0	0
52.83	400	532	532
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
52.83	400	0	0
53.00	400	68	68

17211.00 Arlington HS - Proposed Conditions - NOI Resuppe III 24-hr 10 yr Rainfall=5.17" Prepared by Samiotes Engineering Printed 5/28/2020 Page 66


HydroCAD® 10.00-24	s/n 03575	© 2018 HydroCAI) Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Device 3	51.00'	1.020 in/hr Exfiltration over Surface area
#2	Secondary	54.50'	25.0' long x 3.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.92 2.97 3.07 3.32
#3	Primary	51.00'	12.0" Round Culvert L= 25.0' Ke= 0.500
			Inlet / Outlet Invert= 51.00' / 50.88' S= 0.0048 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.03 cfs @ 12.10 hrs HW=54.65' TW=49.97' (Dynamic Tailwater) **-3=Culvert** (Passes 0.03 cfs of 6.71 cfs potential flow) 1=Exfiltration (Exfiltration Controls 0.03 cfs)

Secondary OutFlow Max=3.65 cfs @ 12.10 hrs HW=54.65' TW=49.97' (Dynamic Tailwater) -2=Broad-Crested Rectangular Weir (Weir Controls 3.65 cfs @ 0.95 fps)

Pond 2P: rain garden#2 cascading

Prepared by Samiotes Engineering

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 67

Summary for Pond 3P: rain garden#3 cascading

Inflow Area = 1.152 ac, 51.48% Impervious, Inflow Depth > 2.86" for 10 yr event

Inflow = 4.00 cfs @ 12.10 hrs, Volume= 0.274 af

Outflow = 3.80 cfs @ 12.17 hrs, Volume= 0.233 af, Atten= 5%, Lag= 3.8 min

Primary = 3.80 cfs @ 12.17 hrs, Volume= 0.233 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 50.22' @ 12.17 hrs Surf.Area= 1,517 sf Storage= 2,605 cf Flood Elev= 50.00' Surf.Area= 1,373 sf Storage= 2,283 cf

Plug-Flow detention time= 197.8 min calculated for 0.233 af (85% of inflow) Center-of-Mass det. time= 88.1 min (997.8 - 909.8)

Volume	Invert	Avail.Storage	Storage Description
#1	46.00'	2,710 cf	Rain Garden Envelope (Prismatic)Listed below (Recalc)
			3,911 cf Overall - 1,200 cf Embedded = 2,710 cf
#2	46.00'	120 cf	crush stone (Prismatic)Listed below (Recalc) Inside #1
			300 cf Overall x 40.0% Voids
#3	46.50'	199 cf	Bio Media (Prismatic)Listed below (Recalc) Inside #1
			798 cf Overall x 25.0% Voids
#4	47.83'	20 cf	Mulch (Prismatic)Listed below (Recalc) Inside #1
			102 cf Òverall x 20.0% Voids

3,050 cf Total Available Storage

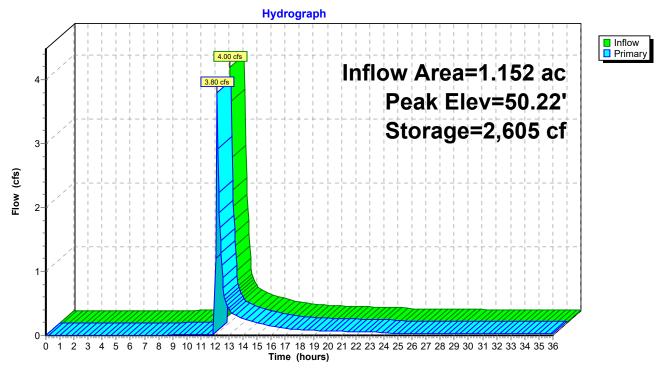
Elevation	Surf.Area	Inc.Store	Cum.Store (cubic-feet)
(feet)	(sq-ft)	(cubic-feet)	
46.00	600	0	0
48.00	600	1,200	1,200
49.00	957	779	1,979
50.00	1,373	1,165	3,144
50.50	1,695	767	3,911
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
46.00	600	0	0
46.50	600	300	300
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
46.50	600	0	0
47.83	600	798	798
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
47.83	600	0	0
48.00	600	102	102

17211.00 Arlington HS - Proposed Conditions - NOI Resuppe III 24-hr 10 yr Rainfall=5.17"
Prepared by Samiotes Engineering Printed 5/28/2020

Page 68

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Device 3	46.00'	1.020 in/hr Exfiltration over Surface area
#2	Device 3	50.00'	24.0" x 48.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#3	Primary	46.00'	15.0" Round Culvert
			L= 26.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 46.00' / 45.87' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf


Primary OutFlow Max=3.33 cfs @ 12.17 hrs HW=50.19' TW=0.00' (Dynamic Tailwater)

-3=Culvert (Passes 3.33 cfs of 8.81 cfs potential flow)

—1=Exfiltration (Exfiltration Controls 0.04 cfs)

-2=Orifice/Grate (Weir Controls 3.29 cfs @ 1.43 fps)

Pond 3P: rain garden#3 cascading

17211.00 Arlington HS - Proposed Conditions - NOI Resulppe III 24-hr 10 yr Rainfall=5.17"

Prepared by Samiotes Engineering

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 69

Summary for Pond 4P: UGS-1

Inflow Area = 1.705 ac, 60.59% Impervious, Inflow Depth = 3.42" for 10 yr event Inflow 6.48 cfs @ 12.09 hrs, Volume= 0.485 af 6.85 cfs @ 12.11 hrs, Volume= Outflow 0.448 af, Atten= 0%, Lag= 1.0 min Discarded = 0.04 cfs @ 8.55 hrs, Volume= 0.100 af 6.81 cfs @ 12.11 hrs, Volume= 0.347 af Primary =

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 43.93' @ 12.11 hrs Surf.Area= 1,672 sf Storage= 4,668 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 118.5 min (920.4 - 801.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	39.50'	2,099 cf	29.92'W x 55.89'L x 5.50'H Field A
			9,196 cf Overall - 3,198 cf Embedded = 5,998 cf x 35.0% Voids
#2A	40.25'	3,198 cf	ADS_StormTech MC-3500 d +Capx 28 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			28 Chambers in 4 Rows
			Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf
		5,297 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	39.25'	24.0" Round Culvert L= 50.0' Ke= 0.500
	•		Inlet / Outlet Invert= 39.25' / 38.75' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 3.14 sf
#2	Device 1	43.67'	5.0' long x 4.00' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)
#3	Discarded	39.50'	1.020 in/hr Exfiltration over Surface area
#4	Device 1	42.42'	9.0" Vert. Orifice/Grate X 3 rows with 6.0" cc spacing C= 0.600

Discarded OutFlow Max=0.04 cfs @ 8.55 hrs HW=39.58' (Free Discharge) **T_3=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=6.56 cfs @ 12.11 hrs HW=43.91' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 6.56 cfs of 28.94 cfs potential flow)

—2=Sharp-Crested Rectangular Weir (Weir Controls 1.91 cfs @ 1.60 fps)

-4=Orifice/Grate (Orifice Controls 4.65 cfs @ 3.90 fps)

Page 70

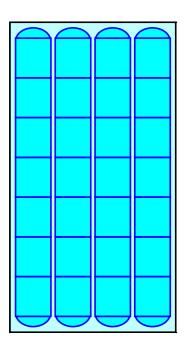
Pond 4P: UGS-1 - Chamber Wizard Field A

Chamber Model = ADS StormTechMC-3500 d +Cap (ADS StormTech® MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17"L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing

7 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 53.89' Row Length +12.0" End Stone x 2 = 55.89' Base Length

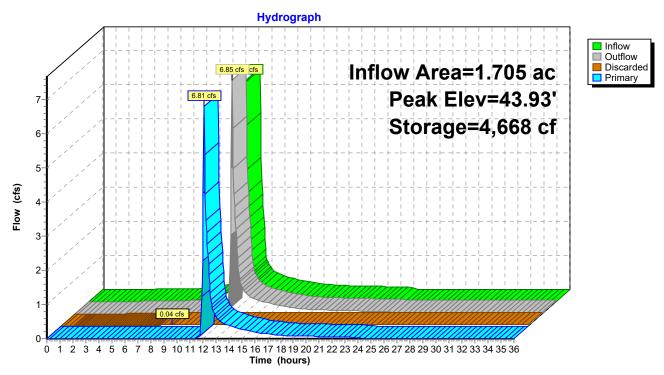

4 Rows x 77.0" Wide + 9.0" Spacing x 3 + 12.0" Side Stone x 2 = 29.92' Base Width 9.0" Base + 45.0" Chamber Height + 12.0" Cover = 5.50' Field Height

28 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 4 Rows = 3,197.9 cf Chamber Storage

9,196.2 cf Field - 3,197.9 cf Chambers = 5,998.4 cf Stone x 35.0% Voids = 2,099.4 cf Stone Storage

Chamber Storage + Stone Storage = 5,297.3 cf = 0.122 af Overall Storage Efficiency = 57.6% Overall System Size = 55.89' x 29.92' x 5.50'

28 Chambers 340.6 cy Field 222.2 cy Stone



Page 71

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Pond 4P: UGS-1

Prepared by Samiotes Engineering

Printed 5/28/2020

Page 72

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Summary for Pond 5P: rain garden#1 cascading

Inflow Area = 0.725 ac, 65.66% Impervious, Inflow Depth = 3.53" for 10 yr event

Inflow = 2.90 cfs @ 12.09 hrs, Volume= 0.213 af

Outflow = 2.91 cfs @ 12.10 hrs, Volume= 0.209 af, Atten= 0%, Lag= 0.3 min

Primary = 0.01 cfs @ 12.10 hrs, Volume= 0.024 af Secondary = 2.89 cfs @ 12.10 hrs, Volume= 0.185 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 62.13' @ 12.10 hrs Surf.Area= 524 sf Storage= 618 cf

Flood Elev= 63.00' Surf.Area= 660 sf Storage= 1,132 cf

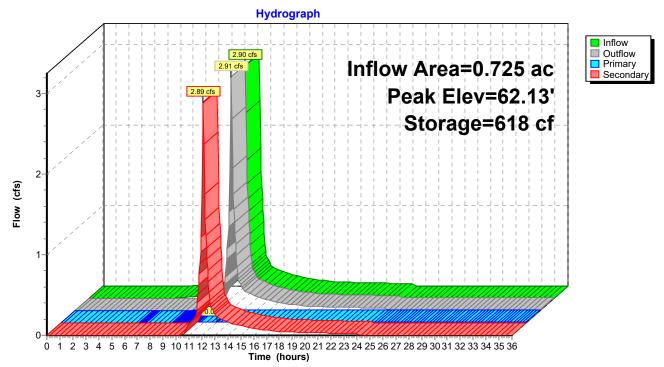
Plug-Flow detention time=65.7 min calculated for 0.209 af (98% of inflow)

Center-of-Mass det. time= 54.0 min (860.3 - 806.2)

Volume	Invert	Avail.Storage	Storage Description
#1	58.50'	1,048 cf	Rain Garden Envelope (Prismatic)Listed below (Recalc)
			1,348 cf Overall - 300 cf Embedded = 1,048 cf
#2	58.50'	30 cf	crush stone (Prismatic)Listed below (Recalc) Inside #1
			75 cf Overall x 40.0% Voids
#3	59.00'	50 cf	Bio Media (Prismatic)Listed below (Recalc) Inside #1
			199 cf Overall x 25.0% Voids
#4	60.33'	5 cf	Mulch (Prismatic)Listed below (Recalc) Inside #1
			26 cf Overall x 20.0% Voids

1,132 cf Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
58.50	150	0	0
60.50	150	300	300
61.00	236	97	397
62.00	503	370	766
63.00	660	582	1,348
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
58.50	150	0	0
59.00	150	75	75
59.00	130	75	73
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
59.00	150	0	0
60.33	150	199	199
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
60.33	150	0	0
60.50	150	26	26


17211.00 Arlington HS - Proposed Conditions - NOI Resuppe III 24-hr 10 yr Rainfall=5.17" Prepared by Samiotes Engineering Printed 5/28/2020 Page 73

Device	Routing	Invert	Outlet Devices
#1	Device 3	58.50'	1.020 in/hr Exfiltration over Surface area
#2	Secondary	62.00'	25.0' long x 3.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.92 2.97 3.07 3.32
#3	Primary	58.50'	8.0" Round Culvert L= 20.0' Ke= 0.500
			Inlet / Outlet Invert= 58.50' / 58.40' S= 0.0050 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.35 sf

Primary OutFlow Max=0.01 cfs @ 12.10 hrs HW=62.13' TW=54.65' (Dynamic Tailwater) **-3=Culvert** (Passes 0.01 cfs of 3.05 cfs potential flow) 1=Exfiltration (Exfiltration Controls 0.01 cfs)

Secondary OutFlow Max=2.86 cfs @ 12.10 hrs HW=62.13' TW=54.65' (Dynamic Tailwater) -2=Broad-Crested Rectangular Weir (Weir Controls 2.86 cfs @ 0.88 fps)

Pond 5P: rain garden#1 cascading

Page 74

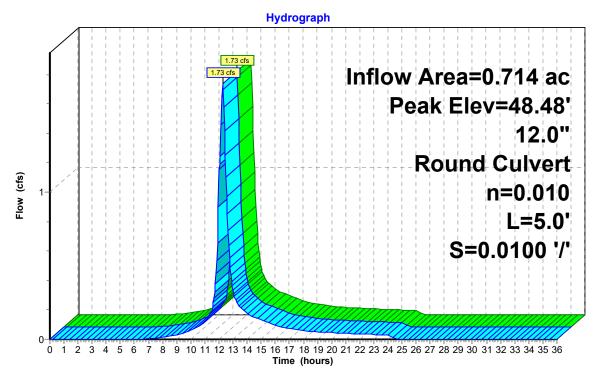
Inflow
Primary

Summary for Pond BB 01 B: BB 01 B

Inflow Area = 0.714 ac, 1.93% Impervious, Inflow Depth = 3.33" for 10 yr event

Inflow = 1.73 cfs @ 12.26 hrs, Volume= 0.198 af

Outflow = 1.73 cfs @ 12.26 hrs, Volume= 0.198 af, Atten= 0%, Lag= 0.0 min


Primary = 1.73 cfs @ 12.26 hrs, Volume= 0.198 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 48.48' @ 12.26 hrs

Device F	Routing	Invert	Outlet Devices
-	Primary	47.63'	12.0" Round Culvert L= 5.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 47.63' / 47.58' S= 0.0100'/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.72 cfs @ 12.26 hrs HW=48.48' TW=46.74' (Dynamic Tailwater) 1=Culvert (Barrel Controls 1.72 cfs @ 3.27 fps)

Pond BB 01 B: BB 01 B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 75

Summary for Pond BB 01 S: BB 01 S

Inflow Area = 0.714 ac, 1.93% Impervious, Inflow Depth = 3.33" for 10 yr event

Inflow = 1.73 cfs @ 12.26 hrs, Volume= 0.198 af

Outflow = 0.20 cfs @ 13.66 hrs, Volume= 0.198 af, Atten= 88%, Lag= 84.0 min

Primary = 0.20 cfs @ 13.66 hrs, Volume= 0.198 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 47.04' @ 13.66 hrs Surf.Area= 0 sf Storage= 3,792 cf

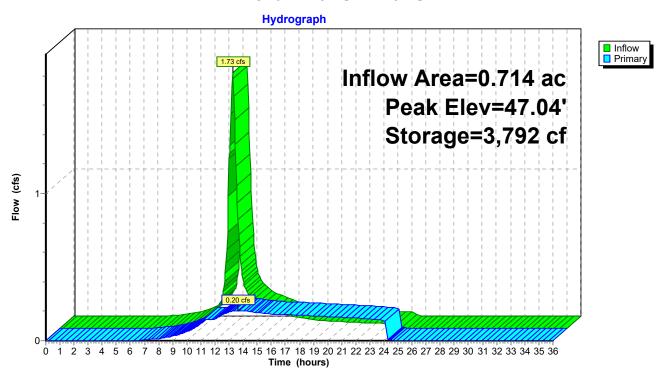
Plug-Flow detention time= 194.0 min calculated for 0.198 af (100% of inflow)

Center-of-Mass det. time= 193.6 min (1,014.1 - 820.5)

Volume	Inver	t Avail.Sto	rage Storag	ge Description
#1	45.65	8,01	17 cf Custo	om Stage DataListed below
Elevatio	-	nc.Store bic-feet)	Cum.Store (cubic-feet)	
45.6		Ó	0	
46.4	l8	16	16	
46.9	8	3,378	3,394	
47.4	! 8	3,405	6,799	
47.9	8	1,218	8,017	
Device	Routing	Invert	Outlet Devi	ces
#1	Primary	45.65'	2.5" Vert. C	Orifice/Grate C= 0.600
#2	Primary	46.98'	4.0" Vert. C	Orifice/Grate C= 0.600
#3	Primary	46.98'	5.0" Vert. C	Orifice/Grate C= 0.600

Primary OutFlow Max=0.20 cfs @ 13.66 hrs HW=47.04' TW=45.48' (Dynamic Tailwater)

-1=Orifice/Grate (Orifice Controls 0.19 cfs @ 5.46 fps)


—2=Orifice/Grate (Orifice Controls 0.01 cfs @ 0.82 fps)

-3=Orifice/Grate (Orifice Controls 0.01 cfs @ 0.82 fps)

Page 76

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Pond BB 01 S: BB 01 S

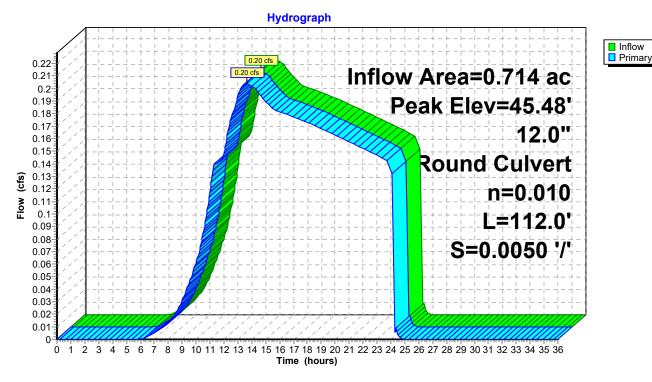
Page 77

Summary for Pond BB 06 B: BB 06 B

Inflow Area = 0.714 ac, 1.93% Impervious, Inflow Depth = 3.33" for 10 yr event

Inflow = 0.20 cfs @ 13.66 hrs, Volume= 0.198 af

Outflow = 0.20 cfs @ 13.66 hrs, Volume= 0.198 af, Atten= 0%, Lag= 0.0 min


Primary = 0.20 cfs @ 13.66 hrs, Volume= 0.198 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 45.48' @ 13.66 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	45.25'	12.0" Round Culvert
			L= 112.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 45.25' / 44.69' S= 0.0050 '/' Cc= 0.900
			n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=0.20 cfs @ 13.66 hrs HW=45.48' TW=44.73' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.20 cfs @ 2.23 fps)

Pond BB 06 B: BB 06 B

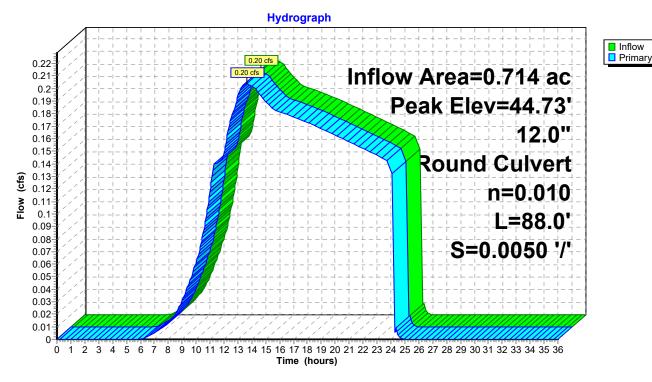
Page 78

Summary for Pond BB 07 B: BB 07 B

Inflow Area = 0.714 ac, 1.93% Impervious, Inflow Depth = 3.33" for 10 yr event

Inflow = 0.20 cfs @ 13.66 hrs, Volume= 0.198 af

Outflow = 0.20 cfs @ 13.66 hrs, Volume= 0.198 af, Atten= 0%, Lag= 0.0 min


Primary = 0.20 cfs @ 13.66 hrs, Volume= 0.198 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 44.73' @ 13.55 hrs

<u>Device</u>	Routing	Invert	Outlet Devices
#1	Primary	44.50'	12.0" Round Culvert L= 88.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 44.50' / 44.06' S= 0.0050 '/' Cc= 0.900
			n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=0.20 cfs @ 13.66 hrs HW=44.73' TW=44.24' (Dynamic Tailwater) 1=Culvert (Outlet Controls 0.20 cfs @ 2.20 fps)

Pond BB 07 B: BB 07 B

Page 79

Inflow Primary

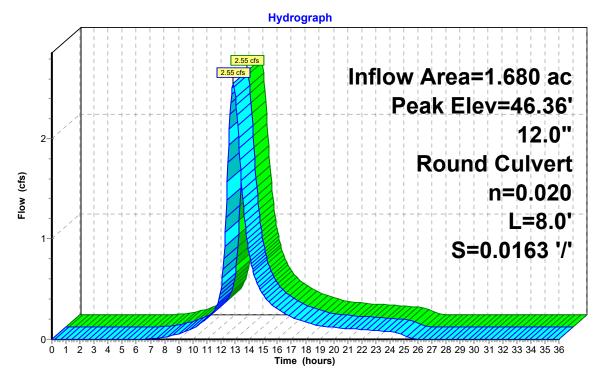
Summary for Pond BB 11 B: BB 11 B

Inflow Area = 1.680 ac, 0.00% Impervious, Inflow Depth = 3.53" for 10 yr event

Inflow 2.55 cfs @ 12.87 hrs, Volume= 0.494 af

Outflow 2.55 cfs @ 12.87 hrs, Volume= 0.494 af, Atten= 0%, Lag= 0.0 min

Primary 2.55 cfs @ 12.87 hrs, Volume= 0.494 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 46.36' @ 12.87 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	45.25'	12.0" Round Culvert L= 8.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 45.25' / 45.12' S= 0.0163 '/' Cc= 0.900 n= 0.020, Flow Area= 0.79 sf

Primary OutFlow Max=2.54 cfs @ 12.87 hrs HW=46.35' TW=45.28' (Dynamic Tailwater) 1=Culvert (Barrel Controls 2.54 cfs @ 3.65 fps)

Pond BB 11 B: BB 11 B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

<u>Page 80</u>

Summary for Pond BB 11 S: BB 11 S

Inflow Area = 1.680 ac, 0.00% Impervious, Inflow Depth = 3.53" for 10 yr event

Inflow = 2.55 cfs @ 12.87 hrs, Volume= 0.494 af

Outflow = 1.58 cfs @ 13.45 hrs, Volume= 0.494 af, Atten= 38%, Lag= 34.5 min

Primary = 1.58 cfs @ 13.45 hrs, Volume= 0.494 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 45.49' @ 13.45 hrs Surf.Area= 0 sf Storage= 3,305 cf

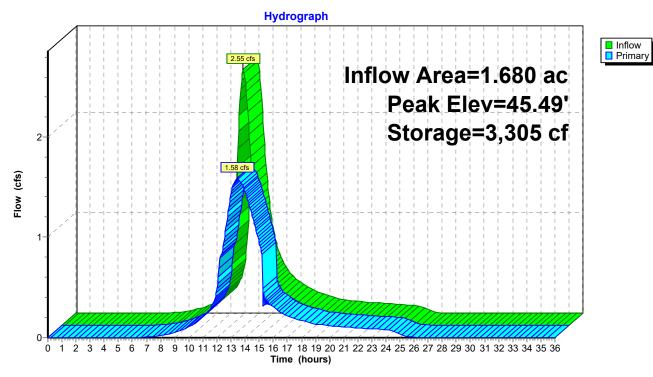
Plug-Flow detention time= 15.1 min calculated for 0.493 af (100% of inflow)

Center-of-Mass det. time= 15.1 min (877.7 - 862.7)

Volume	Inve	ert Avail	.Storage	Storage Description
#1	44.1	4'	7,432 cf	Custom Stage DataListed below
Elevatio		Inc.Store		n.Store c-feet)
44.1	14	0		0
44.9	97	16		16
45.4	17	3,131		3,147
45.9	97	3,156		6,303
46.4	17	1,129		7,432
Device	Routing	lnv	vert Outl	et Devices
#1	Primary	44.	.14' 2.5"	Vert. Orifice/Grate C= 0.600

 Primary Primary	8.0" Vert. Orifice/Grate 6.0" Vert. Orifice/Grate	
•		

Primary OutFlow Max=1.58 cfs @ 13.45 hrs HW=45.49' TW=44.25' (Dynamic Tailwater)


1=Orifice/Grate (Orifice Controls 0.18 cfs @ 5.38 fps)

-2=Orifice/Grate (Orifice Controls 1.40 cfs @ 4.00 fps)

-3=Orifice/Grate (Orifice Controls 0.00 cfs @ 0.54 fps)

Page 81

Pond BB 11 S: BB 11 S

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 82

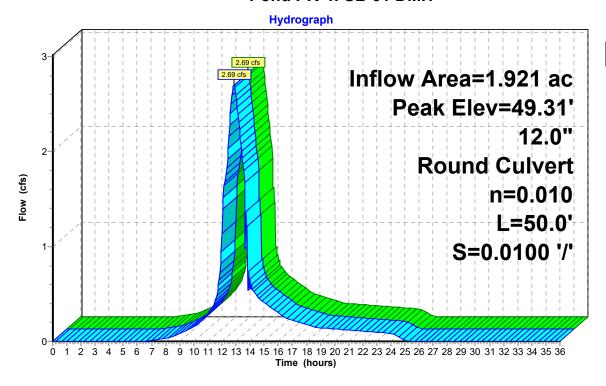
Inflow Primary

Summary for Pond PR-4: SB 01 DMH

Inflow Area = 1.921 ac, 1.31% Impervious, Inflow Depth = 3.48" for 10 yr event

Inflow 2.69 cfs @ 12.84 hrs, Volume= 0.558 af

Outflow 2.69 cfs @ 12.84 hrs, Volume= 0.558 af, Atten= 0%, Lag= 0.0 min


2.69 cfs @ 12.84 hrs, Volume= Primary 0.558 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 49.31' @ 12.84 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	48.30'	12.0" Round Culvert
			L= 50.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 48.30' / 47.80' S= 0.0100 '/' Cc= 0.900
			n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=2.69 cfs @ 12.84 hrs HW=49.31' TW=0.00' (Dynamic Tailwater) 1=Culvert (Inlet Controls 2.69 cfs @ 3.43 fps)

Pond PR-4: SB 01 DMH

Page 83

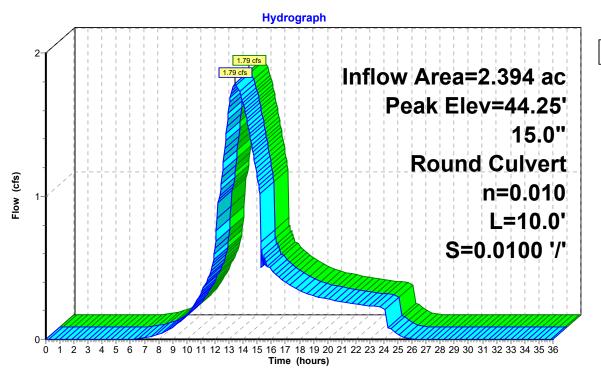
☐ Inflow☐ Primary

Summary for Pond PR-5: DMH 1

Inflow Area = 2.394 ac, 0.58% Impervious, Inflow Depth = 3.47" for 10 yr event

Inflow = 1.79 cfs @ 13.45 hrs, Volume= 0.692 af

Outflow = 1.79 cfs @ 13.45 hrs, Volume= 0.692 af, Atten= 0%, Lag= 0.0 min


Primary = 1.79 cfs @ 13.45 hrs, Volume= 0.692 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 44.25' @ 13.45 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	43.50'	15.0" Round Culvert L= 10.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 43.50' / 43.40' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 1.23 sf

Primary OutFlow Max=1.79 cfs @ 13.45 hrs HW=44.25' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 1.79 cfs @ 3.35 fps)

Pond PR-5: DMH 1

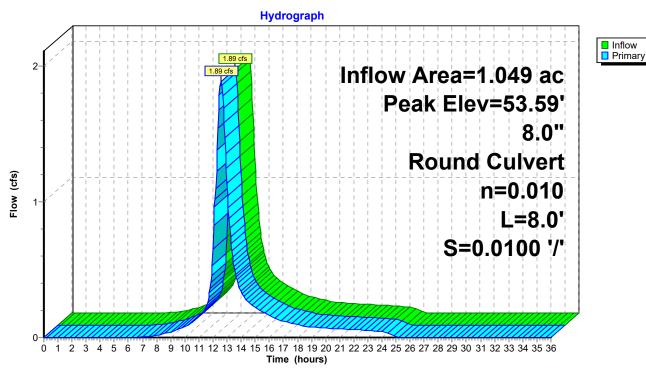
Page 84

Summary for Pond SB 01 B: SB 01 B

Inflow Area = 1.049 ac, 2.41% Impervious, Inflow Depth = 3.45" for 10 yr event

Inflow = 1.89 cfs @ 12.56 hrs, Volume= 0.301 af

Outflow = 1.89 cfs @ 12.56 hrs, Volume= 0.301 af, Atten= 0%, Lag= 0.0 min


Primary = 1.89 cfs @ 12.56 hrs, Volume= 0.301 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 53.59' @ 12.56 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	52.00'	8.0" Round Culvert L= 8.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 52.00' / 51.92' S= 0.0100 '/' Cc= 0.900 n= 0.010. Flow Area= 0.35 sf

Primary OutFlow Max=1.88 cfs @ 12.56 hrs HW=53.59' TW=51.67' (Dynamic Tailwater) 1=Culvert (Inlet Controls 1.88 cfs @ 5.39 fps)

Pond SB 01 B: SB 01 B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 85

Summary for Pond SB 01 S: SB 01 S

Inflow Area = 1.049 ac, 2.41% Impervious, Inflow Depth = 3.45" for 10 yr event

Inflow = 1.89 cfs @ 12.56 hrs, Volume= 0.301 af

Outflow = 1.41 cfs @ 12.88 hrs, Volume= 0.301 af, Atten= 25%, Lag= 18.8 min

Primary = 1.41 cfs @ 12.88 hrs, Volume= 0.301 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 51.77' @ 12.88 hrs Surf.Area= 0 sf Storage= 1,336 cf

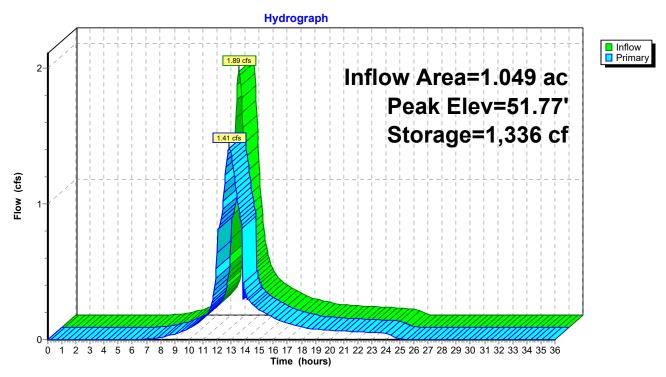
Plug-Flow detention time= 6.5 min calculated for 0.301 af (100% of inflow)

Center-of-Mass det. time= 6.1 min (845.8 - 839.8)

Volume	Inve	ert Avai	il.Storage	Storage Description
#1	50.6	64'	3,084 cf	Custom Stage DataListed below
Elevatio		Inc.Store cubic-feet)	O G	m.Store pic-feet)
50.6	64	0		0
51.4	! 7	16		16
51.9	97	2,170		2,186
52.4	17	898		3,084
Device	Routing	In	vert Out	tlet Devices
#1	Primary	50).64' 4.0 '	" Vert. Orifice/Grate C= 0.600
#2	Primary	50).97' 6.0'	" Vert. Orifice/Grate C= 0.600
#3	Primary	51	.47' 8.0'	" Vert. Orifice/Grate C= 0.600

Primary OutFlow Max=1.41 cfs @ 12.88 hrs HW=51.77' TW=50.68' (Dynamic Tailwater)

1=Orifice/Grate (Orifice Controls 0.41 cfs @ 4.73 fps)


-2=Orifice/Grate (Orifice Controls 0.70 cfs @ 3.58 fps)

-3=Orifice/Grate (Orifice Controls 0.29 cfs @ 1.88 fps)

Page 86

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Pond SB 01 S: SB 01 S

Page 87

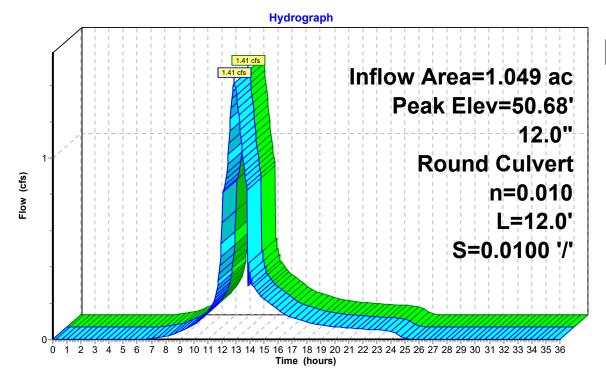
☐ Inflow☐ Primary

Summary for Pond SB 02 B: SB 02 B

Inflow Area = 1.049 ac, 2.41% Impervious, Inflow Depth = 3.45" for 10 yr event

Inflow = 1.41 cfs @ 12.88 hrs, Volume= 0.301 af

Outflow = 1.41 cfs @ 12.88 hrs, Volume= 0.301 af, Atten= 0%, Lag= 0.0 min


Primary = 1.41 cfs @ 12.88 hrs, Volume= 0.301 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 50.68' @ 12.88 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	49.97'	12.0" Round Culvert L= 12.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 49.97' / 49.85' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.41 cfs @ 12.88 hrs HW=50.68' TW=49.30' (Dynamic Tailwater) 1=Culvert (Barrel Controls 1.41 cfs @ 3.34 fps)

Pond SB 02 B: SB 02 B

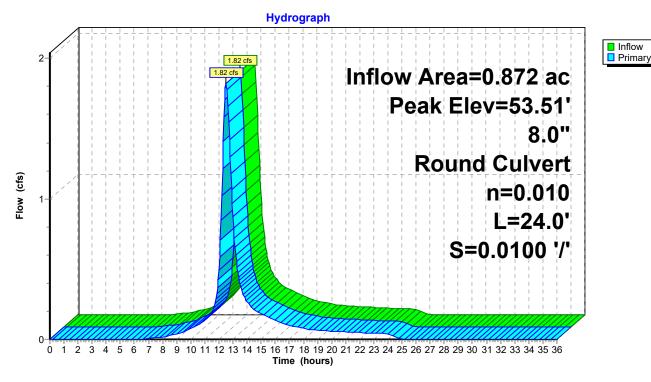
Page 88

Summary for Pond SB 11 B: SB 11 B

Inflow Area = 0.872 ac, 0.00% Impervious, Inflow Depth = 3.53" for 10 yr event

Inflow = 1.82 cfs @ 12.51 hrs, Volume= 0.256 af

Outflow = 1.82 cfs @ 12.51 hrs, Volume= 0.256 af, Atten= 0%, Lag= 0.0 min


Primary = 1.82 cfs @ 12.51 hrs, Volume= 0.256 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 53.51' @ 12.51 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	52.00'	8.0" Round Culvert L= 24.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 52.00' / 51.76' S= 0.0100'/' Cc= 0.900
			n= 0.010 Flow Area= 0.35 sf

Primary OutFlow Max=1.82 cfs @ 12.51 hrs HW=53.50' TW=51.84' (Dynamic Tailwater) 1=Culvert (Inlet Controls 1.82 cfs @ 5.21 fps)

Pond SB 11 B: SB 11 B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

<u>Page 89</u>

Summary for Pond SB 11 S: SB 11 S

Inflow Area = 0.872 ac, 0.00% Impervious, Inflow Depth = 3.53" for 10 yr event

Inflow = 1.82 cfs @ 12.51 hrs, Volume= 0.256 af

Outflow = 1.29 cfs @ 12.81 hrs, Volume= 0.256 af, Atten= 29%, Lag= 17.9 min

Primary = 1.29 cfs @ 12.81 hrs, Volume= 0.256 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 51.95' @ 12.81 hrs Surf.Area= 0 sf Storage= 1,136 cf

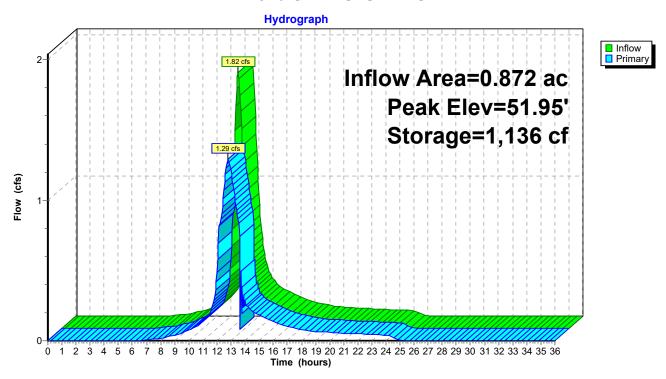
Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 5.3 min (840.7 - 835.4)

Volume	Inve	t Avail.Sto	rage Storaç	ge Description
#1	50.84	1' 2,89	92 cf Custo	om Stage DataListed below
Elevatio		Inc.Store lbic-feet)	Cum.Store (cubic-feet)	
50.8		0	0	
51.6	67	16	16	
52.1	7	2,035	2,051	
52.6	67	841	2,892	
Device	Routing	Invert	Outlet Devi	ices
#1	Primary	50.84'	4.0" Vert. C	Orifice/Grate C= 0.600
#2	Primary	51.17'	6.0" Vert. C	Orifice/Grate C= 0.600
#3	Primary	51.67'	6.0" Vert. C	Orifice/Grate C= 0.600

Primary OutFlow Max=1.29 cfs @ 12.81 hrs HW=51.94' TW=50.77' (Dynamic Tailwater)

1=Orifice/Grate (Orifice Controls 0.41 cfs @ 4.66 fps)


-2=Orifice/Grate (Orifice Controls 0.68 cfs @ 3.49 fps)

-3=Orifice/Grate (Orifice Controls 0.20 cfs @ 1.78 fps)

Page 90

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Pond SB 11 S: SB 11 S

Page 91

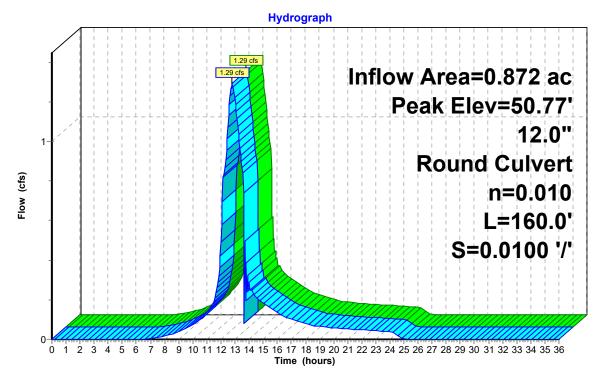
Inflow
Primary

Summary for Pond SB 12 B: SB 12 B

Inflow Area = 0.872 ac, 0.00% Impervious, Inflow Depth = 3.53" for 10 yr event

Inflow = 1.29 cfs @ 12.81 hrs, Volume= 0.256 af

Outflow = 1.29 cfs @ 12.81 hrs, Volume= 0.256 af, Atten= 0%, Lag= 0.0 min


Primary = 1.29 cfs @ 12.81 hrs, Volume= 0.256 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 50.77' @ 12.81 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	50.17'	12.0" Round Culvert L= 160.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 50.17' / 48.57' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.29 cfs @ 12.81 hrs HW=50.77' TW=49.30' (Dynamic Tailwater) 1=Culvert (Inlet Controls 1.29 cfs @ 2.63 fps)

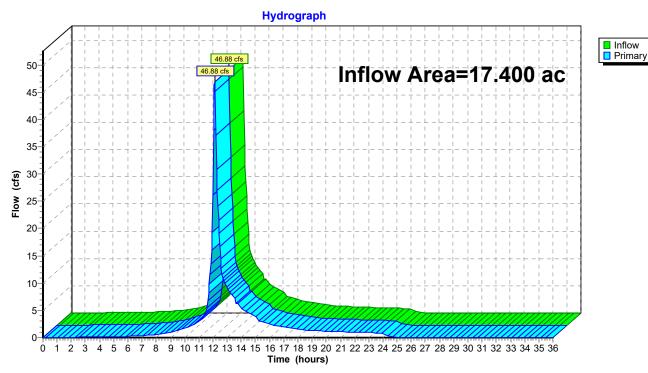
Pond SB 12 B: SB 12 B

Printed 5/28/2020

Page 92

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Summary for Link POA: POA


17.400 ac, 49.60% Impervious, Inflow Depth > 3.43" for 10 yr event Inflow Area =

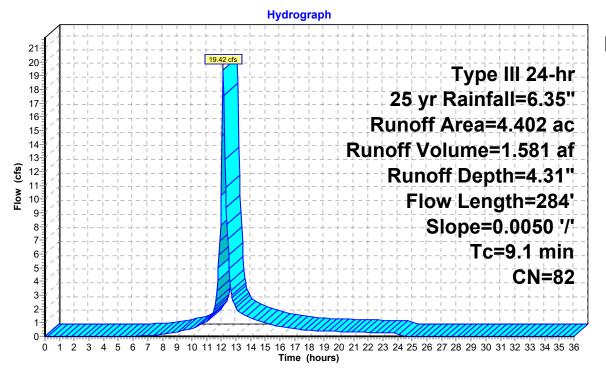
Inflow 46.88 cfs @ 12.12 hrs, Volume= 4.978 af

46.88 cfs @ 12.12 hrs, Volume= Primary 4.978 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Link POA: POA

Page 93


Summary for Subcatchment PR-1: PR-1

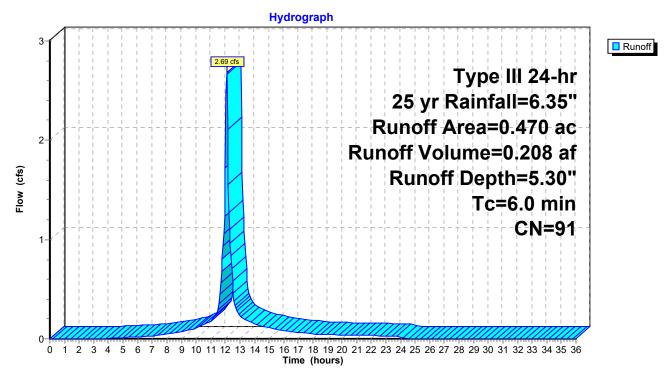
Runoff = 19.42 cfs @ 12.13 hrs, Volume= 1.581 af, Depth= 4.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

Area (ac) CN Description									
1.892 61 >75% Grass cover, Good,						, HSG B			
	2.	510	98 Pave	Paved parking, HSG B					
	4.	402 8	32 Weig	ghted Aver	age				
	1.	892	42.9	8% Pervio					
	2.	510	57.0	2% Imperv	∕ious Area				
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	1.2	50	0.0050	0.69		Sheet Flow, A-B			
						Smooth surfaces n= 0.011 P2= 3.20"			
	7.9	234	0.0050	0.49		Shallow Concentrated Flow, B-C			
						Short Grass Pasture Kv= 7.0 fps			
_	9.1	284	Total	•	•				

Subcatchment PR-1: PR-1

Page 94


Summary for Subcatchment PR-1A: PR-1A

Runoff = 2.69 cfs @ 12.09 hrs, Volume= 0.208 af, Depth= 5.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

Area	a (ac)	CN	Desc	Description						
	0.090	61	>75%	% Grass co	over, Good	I, HSG B				
(0.380	98	Pave	ed parking	, HSG B					
(0.470	91	Weig	hted Aver						
(0.090		19.1	5% Pervio	us Area					
(0.380			5% Imperv	ious Area					
To (min)		,	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0)					Direct Entry,				

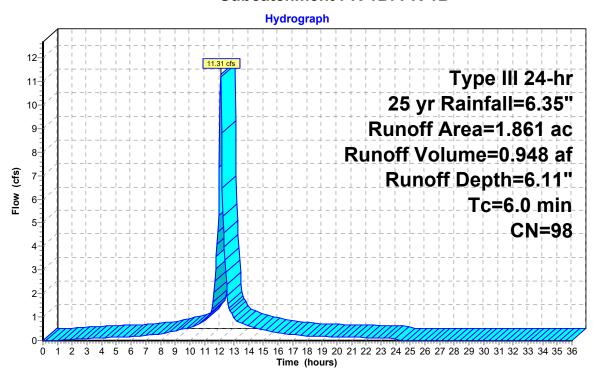
Subcatchment PR-1A: PR-1A

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 95

Runoff


Summary for Subcatchment PR-1B: PR-1B

Runoff = 11.31 cfs @ 12.09 hrs, Volume= 0.948 af, Depth= 6.11"

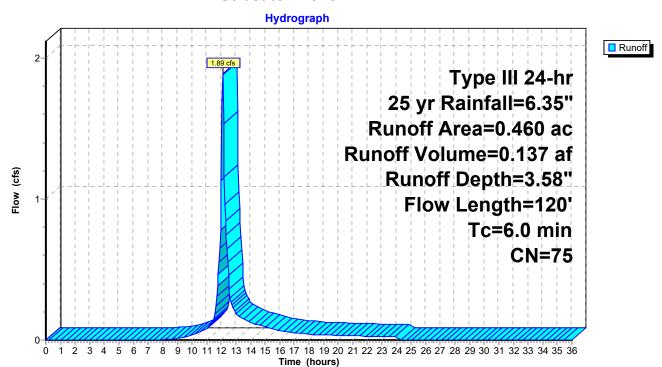
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

 Area	(ac)	CN	Desc	cription		
1.861 98 Roofs, HSG B						
 1.	861		100.	00% Impe	rvious Area	1
Тс	Leng	th	Slope	Velocity	Canacity	Description
 (min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Beschiption
6.0						Direct Entry,

Subcatchment PR-1B: PR-1B

Page 96

Summary for Subcatchment PR-1C: PR-1C


Runoff = 1.89 cfs @ 12.09 hrs, Volume= 0.137 af, Depth= 3.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

	Area	(ac) C	N Des	cription						
	0.	020 5	55 Woo	ds, Good,	HSG B					
	0.	260 6	31 >75°	>75% Grass cover, Good, HSG B						
0.180 98 Paved parking, HSG B										
0.460 75 Weighted Average										
	0.	280		7% Pervio						
	0.	180	39.1	3% Imperv	ious Area					
				•						
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	3.6	20	0.0700	0.09		Sheet Flow, 20' SF				
						Woods: Light underbrush n= 0.400 P2= 3.20"				
	1.9	40	0.5000	0.35		Sheet Flow, 30' SF				
						Grass: Dense n= 0.240 P2= 3.20"				
	0.1	12	0.0100	1.61		Shallow Concentrated Flow, 12' SCF				
						Unpaved Kv= 16.1 fps				
	0.2	48	0.0400	4.06		Shallow Concentrated Flow, 48' SCF				
_						Paved Kv= 20.3 fps				
		400				T 00 :				

5.8 120 Total, Increased to minimum Tc = 6.0 min

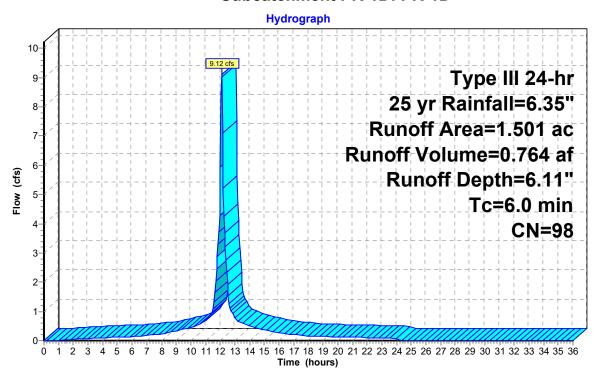
Subcatchment PR-1C: PR-1C

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 97

Runoff


Summary for Subcatchment PR-1D: PR-1D

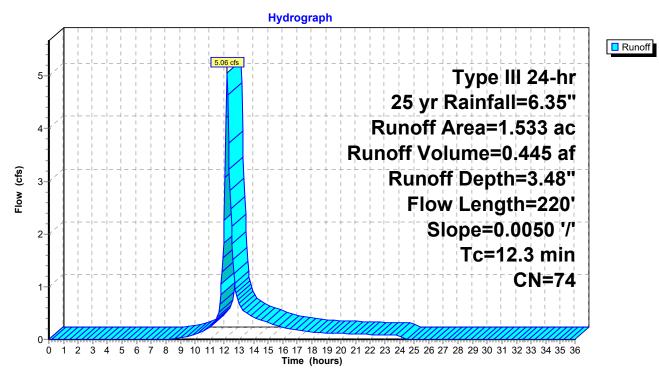
Runoff = 9.12 cfs @ 12.09 hrs, Volume= 0.764 af, Depth= 6.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

	Area	(ac)	CN	Desc	cription		
	1.501 98 Roofs, HSG B						
_	1.	.501		100.	00% Impe	rvious Area	a
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0	•			•		Direct Entry,

Subcatchment PR-1D: PR-1D

Page 98


Summary for Subcatchment PR-1E: PR-1E

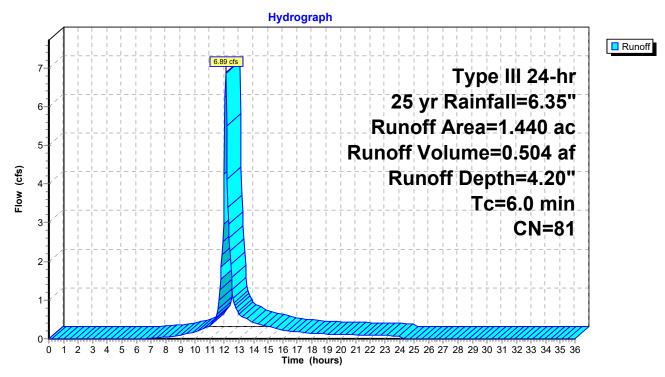
Runoff = 5.06 cfs @ 12.17 hrs, Volume= 0.445 af, Depth= 3.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

	Area (ac) CN Description									
	1.	000 6	61 >75°	% Grass co	over, Good	, HSG B				
_	0.	533	98 Pave	ed parking	, HSG B					
	1.	533								
	1.533 74 Weighted Average 1.000 65.23% Pervious Area									
	0.	533	34.7	7% Imper	ious Area					
	_									
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	9.8	50	0.0050	0.09		Sheet Flow, 50' SF				
						Grass: Short n= 0.150 P2= 3.20"				
	2.5	170	0.0050	1.14		Shallow Concentrated Flow, 170' SCF				
_						Unpaved Kv= 16.1 fps				
	12.3	220	Total							

Subcatchment PR-1E: PR-1E

Page 99


Summary for Subcatchment PR-2: PR-2

Runoff = 6.89 cfs @ 12.09 hrs, Volume= 0.504 af, Depth= 4.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

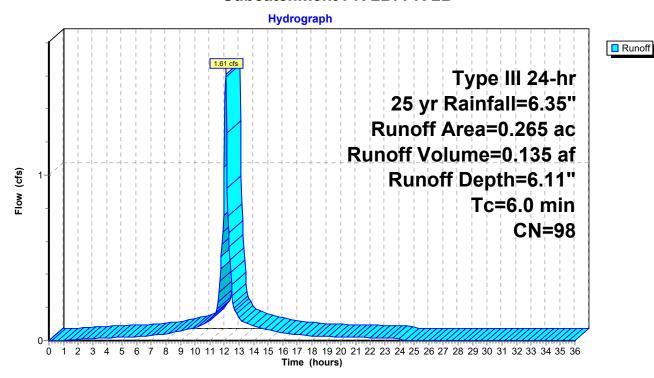
Area	(ac)	CN	Desc	Description						
0.	672	61	>75%	6 Grass co	, HSG B					
0.	.768	768 98 Paved parking, HSG B								
1.440 81 Weighted Average										
0.	.672		46.6	7% Pervio	us Area					
0.	0.768			3% Imperv	ious Area					
Тс	Leng	th :	Slope	Velocity	Capacity	Description				
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)					
6.0						Direct Entry,				

Subcatchment PR-2: PR-2

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 100


Summary for Subcatchment PR-2B: PR-2B

Runoff = 1.61 cfs @ 12.09 hrs, Volume= 0.135 af, Depth= 6.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

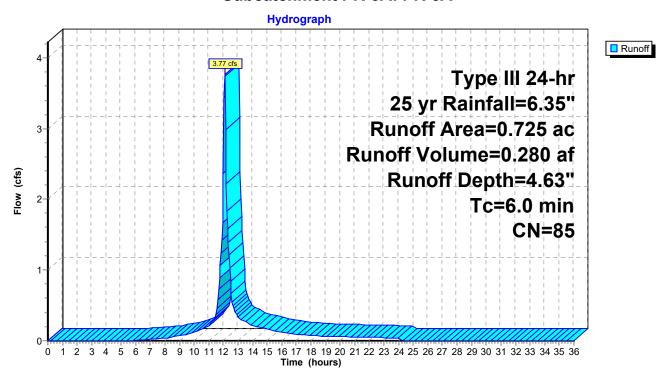
 Area	(ac)	CN	Desc	cription		
0.	265	98	Roof	s, HSG B		
0.265 100.00% Impervious Area						a
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry,

Subcatchment PR-2B: PR-2B

Printed 5/28/2020

Page 101

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC


Summary for Subcatchment PR-3A: PR-3A

Runoff = 3.77 cfs @ 12.09 hrs, Volume= 0.280 af, Depth= 4.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

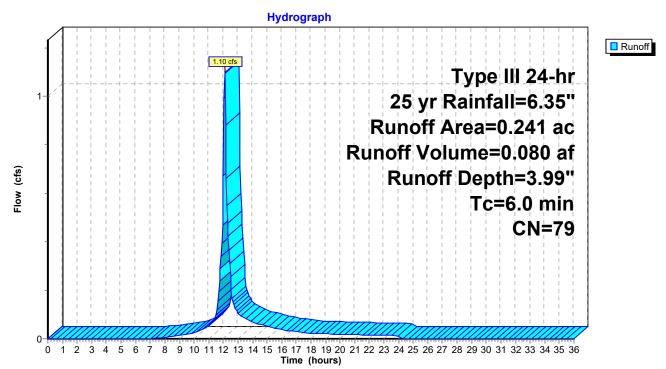
Area	(ac)	CN	Desc	Description						
0.	.249	61	>75%	√ Grass co	over, Good	, HSG B				
0.	0.476 98 Paved parking, HSG B									
0.	.725	85	Weig	hted Aver	age					
0.	.249		34.3	4% Pervio	us Area					
0.	0.476			6% Imperv	vious Area					
Тс	Leng		Slope	Velocity	Capacity	Description				
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)					
6.0						Direct Entry,				

Subcatchment PR-3A: PR-3A

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 102


Summary for Subcatchment PR-3B: PR-3B

Runoff = 1.10 cfs @ 12.09 hrs, Volume= 0.080 af, Depth= 3.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

Area	(ac)	CN	Desc	Description						
0.	124	61	>75%	6 Grass co	over, Good	, HSG B				
0.	0.117 98 Paved parking, HSG B									
0.	241	79	Weig	hted Aver	age					
0.	124		51.4	5% Pervio	us Area					
0.	0.117			5% Imperv	ious Area					
Тс	Leng	th S	Slope	Velocity	Capacity	Description				
(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)					
6.0						Direct Entry,				

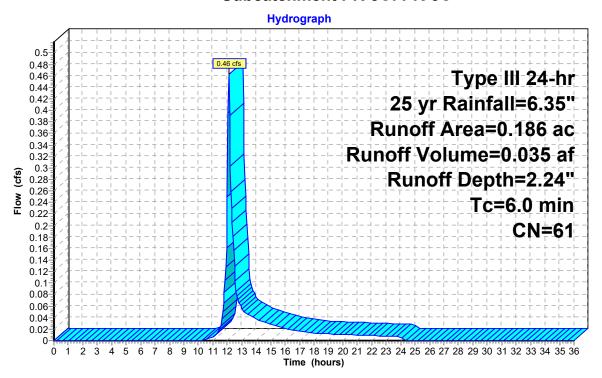
Subcatchment PR-3B: PR-3B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 103

Runoff


Summary for Subcatchment PR-3C: PR-3C

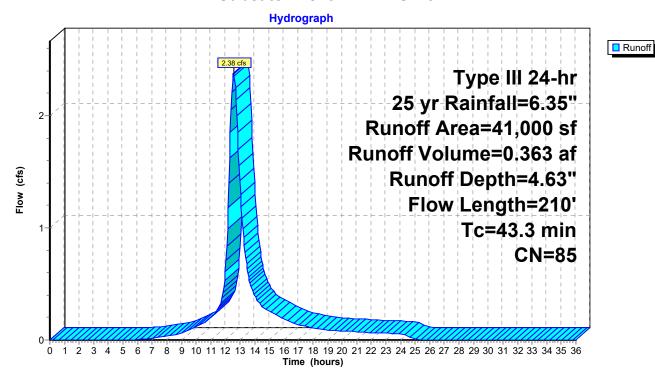
Runoff = 0.46 cfs @ 12.10 hrs, Volume= 0.035 af, Depth= 2.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

	Area	(ac)	CN	Desc	cription		
	0.	186	61	>759	% Grass co	over, Good	, HSG B
	0.	186		100.	00% Pervi	ous Area	
	Тс	Leng	ıth	Slope	Velocity	Capacity	Description
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	'
_	6.0						Direct Entry,

Subcatchment PR-3C: PR-3C

Page 104


Summary for Subcatchment PR-4A: SB 01 A

Runoff = 2.38 cfs @ 12.57 hrs, Volume= 0.363 af, Depth= 4.63"

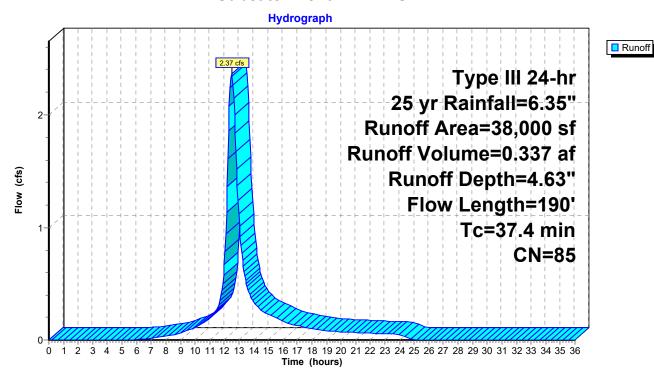
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

	Α	rea (sf)	CN I	Description						
*		41,000	85	SS SYNTHETIC TURF- PAD- LINER						
	41,000		•	100.00% P	ervious Are	a				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	39.6	110	0.0055	0.05		Sheet Flow, Through Turf Section				
	3.7	100	0.0001	0.45	0.16	Grass: Bermuda n= 0.410 P2= 3.20" Pipe Channel, TRENCH DRAIN LEVEL 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.010				
	43.3	210	Total							

Subcatchment PR-4A: SB 01 A

Page 105

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC


Summary for Subcatchment PR-4B: SB 11 A

Runoff = 2.37 cfs @ 12.50 hrs, Volume= 0.337 af, Depth= 4.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

	Α	rea (sf)	CN [Description		
*		38,000	85 5	YNTHETI	C TURF- P	AD- LINER
	38,000		1	00.00% P	ervious Are	ea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	33.7	90	0.0055	0.04		Sheet Flow, Through Turf Section
	3.7	100	0.0001	0.45	0.16	Grass: Bermuda n= 0.410 P2= 3.20" Pipe Channel, TRENCH DRAIN LEVEL 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.010
	37 4	190	Total	•		

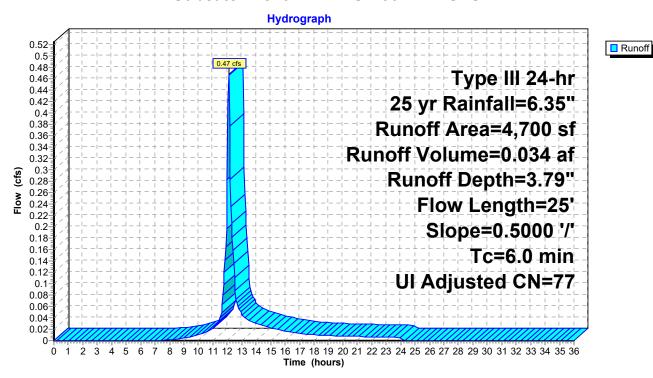
Subcatchment PR-4B: SB 11 A

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 106

Summary for Subcatchment PR-4C: SB 00 DPW SLOPE


Runoff = 0.47 cfs @ 12.09 hrs, Volume= 0.034 af, Depth= 3.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

A	rea (sf)	CN A	Adj Desc	cription				
	1,100	98	Unco	Unconnected pavement, HSG A				
	3,600	74	>75%	6 Grass co	ver, Good, HSG C			
	4,700	80	77 Weig	Weighted Average, UI Adjusted				
	3,600		76.6	76.60% Pervious Area				
	1,100		23.4	23.40% Impervious Area				
	1,100		100.	100.00% Unconnected				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
1.3	25	0.5000	0.32		Sheet Flow, SLOPING LAND Grass: Dense n= 0.240 P2= 3.20"			

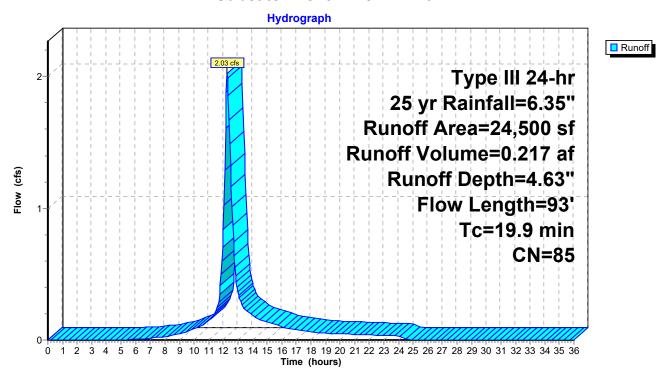
1.3 25 Total, Increased to minimum Tc = 6.0 min

Subcatchment PR-4C: SB 00 DPW SLOPE

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 107


Summary for Subcatchment PR-5A: BB 01 A

Runoff = 2.03 cfs @ 12.27 hrs, Volume= 0.217 af, Depth= 4.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

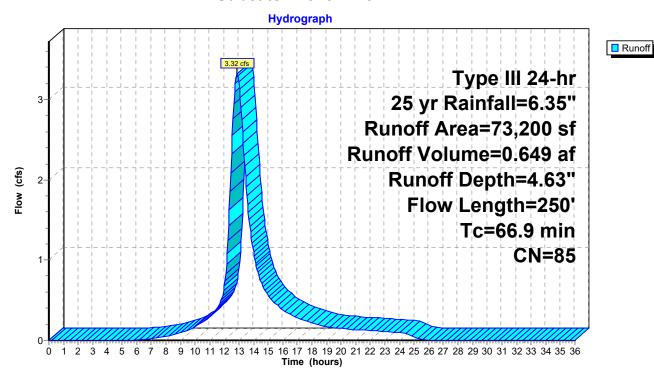
	Α	rea (sf)	CN	Description						
*		24,500	85	SS SYNTHETIC TURF- PAD- LINER						
	24,500			100.00% P	ervious Are	ea				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	18.2	46	0.0067	0.04		Sheet Flow, Through Turf Section				
	1.7	47	0.0001	0.45	0.16	Grass: Bermuda n= 0.410 P2= 3.20" Pipe Channel, TRENCH DRAIN LEVEL 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.010				
	19.9	93	Total							

Subcatchment PR-5A: BB 01 A

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 108


Summary for Subcatchment PR-5B: BB 11 A

Runoff = 3.32 cfs @ 12.87 hrs, Volume= 0.649 af, Depth= 4.63"

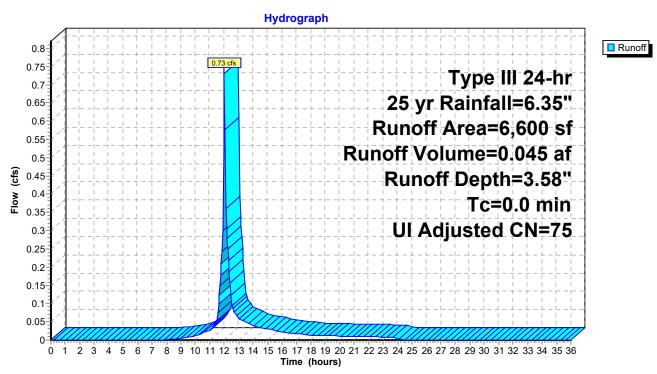
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

	Α	rea (sf)	CN I	Description					
*		73,200	85	85 SYNTHETIC TURF- PAD- LINER					
		73,200		100.00% P	ervious Are	ea			
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
	22.1	53	0.0055	0.04		Sheet Flow, Through Turf Section			
	43.1	150	0.0083	0.06		Grass: Bermuda n= 0.410 P2= 3.20" Sheet Flow, SYNTHETIC TURF Grass: Bermuda n= 0.410 P2= 3.20"			
	1.7	47	0.0001	0.45	0.16				
	66.9	250	Total						

Subcatchment PR-5B: BB 11 A

Page 109

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC


Summary for Subcatchment PR-5C: SLOPE

Runoff = 0.73 cfs @ 12.00 hrs, Volume= 0.045 af, Depth= 3.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=6.35"

Area (sf)	CN	Adj	Description
600	98		Unconnected roofs, HSG C
6,000	74		>75% Grass cover, Good, HSG C
6,600	76	75	Weighted Average, UI Adjusted
6,000			90.91% Pervious Area
600			9.09% Impervious Area
600			100.00% Unconnected

Subcatchment PR-5C: SLOPE

Page 110

Summary for Pond 2P: rain garden#2 cascading

Inflow Area = 0.966 ac, 61.39% Impervious, Inflow Depth > 4.42" for 25 yr event Inflow = 4.88 cfs @ 12.09 hrs, Volume= 0.356 af

Outflow = 4.87 cfs @ 12.10 hrs, Volume= 0.339 af, Atten= 0%, Lag= 0.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 54.68' @ 12.10 hrs Surf.Area= 1,127 sf Storage= 1,397 cf Flood Elev= 55.00' Surf.Area= 1,326 sf Storage= 1,784 cf

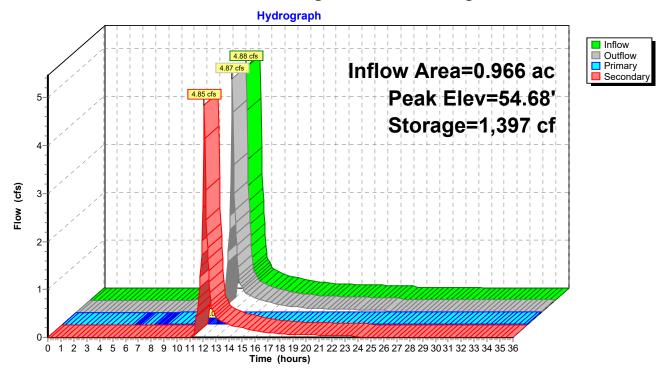
Plug-Flow detention time= 84.5 min calculated for 0.339 af (95% of inflow) Center-of-Mass det. time= 47.9 min (883.5 - 835.6)

Volume	Invert	Avail.Storage	Storage Description
#1	51.00'	1,557 cf	Rain Garden Envelope (Prismatic)Listed below (Recalc)
			2,357 cf Overall - 800 cf Embedded = 1,557 cf
#2	51.00'	80 cf	crush stone (Prismatic)Listed below (Recalc) Inside #1
			200 cf Overall x 40.0% Voids
#3	51.50'	133 cf	Bio Media (Prismatic)Listed below (Recalc) Inside #1
			532 cf Overall x 25.0% Voids
#4	52.83'	14 cf	Mulch (Prismatic)Listed below (Recalc) Inside #1
			68 cf Overall x 20.0% Voids

1,784 cf Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
51.00	400	0	0
53.00	400	800	800
54.00	694	547	1,347
55.00	1,326	1,010	2,357
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
51.00	400	0	0
51.50	400	200	200
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
51.50	400	0	0
52.83	400	532	532
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
52.83	400	0	0
53.00	400	68	68

17211.00 Arlington HS - Proposed Conditions - NOI Resuppe III 24-hr 25 yr Rainfall=6.35" Prepared by Samiotes Engineering Printed 5/28/2020 Page 111


HydroCAD® 10.00-24	s/n 03575	5 © 2018 HydroCAD Software Solutions LLC	
		-	

Device	Routing	Invert	Outlet Devices
#1	Device 3	51.00'	1.020 in/hr Exfiltration over Surface area
#2	Secondary	54.50'	25.0' long x 3.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.92 2.97 3.07 3.32
#3	Primary	51.00'	12.0" Round Culvert L= 25.0' Ke= 0.500
			Inlet / Outlet Invert= 51.00' / 50.88' S= 0.0048 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.03 cfs @ 12.10 hrs HW=54.68' TW=50.25' (Dynamic Tailwater) **-3=Culvert** (Passes 0.03 cfs of 6.75 cfs potential flow) 1=Exfiltration (Exfiltration Controls 0.03 cfs)

Secondary OutFlow Max=4.82 cfs @ 12.10 hrs HW=54.68' TW=50.25' (Dynamic Tailwater) -2=Broad-Crested Rectangular Weir (Weir Controls 4.82 cfs @ 1.05 fps)

Pond 2P: rain garden#2 cascading

Page 112

Summary for Pond 3P: rain garden#3 cascading

Inflow Area = 1.152 ac, 51.48% Impervious, Inflow Depth > 3.90" for 25 yr event

Inflow = 5.34 cfs @ 12.10 hrs, Volume= 0.374 af

Outflow = 5.15 cfs @ 12.12 hrs, Volume= 0.332 af, Atten= 4%, Lag= 0.9 min

Primary = 5.15 cfs @ 12.12 hrs, Volume= 0.332 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 50.26' @ 12.12 hrs Surf.Area= 1,539 sf Storage= 2,658 cf Flood Elev= 50.00' Surf.Area= 1,373 sf Storage= 2,283 cf

Plug-Flow detention time= 142.8 min calculated for 0.332 af (89% of inflow)

Center-of-Mass det. time= 60.5 min (941.5 - 881.0)

Volume	Invert	Avail.Storage	Storage Description
#1	46.00'	2,710 cf	Rain Garden Envelope (Prismatic)Listed below (Recalc)
			3,911 cf Overall - 1,200 cf Embedded = 2,710 cf
#2	46.00'	120 cf	crush stone (Prismatic)Listed below (Recalc) Inside #1
			300 cf Overall x 40.0% Voids
#3	46.50'	199 cf	Bio Media (Prismatic)Listed below (Recalc) Inside #1
			798 cf Overall x 25.0% Voids
#4	47.83'	20 cf	Mulch (Prismatic)Listed below (Recalc) Inside #1
			102 cf Overall x 20.0% Voids

3,050 cf Total Available Storage

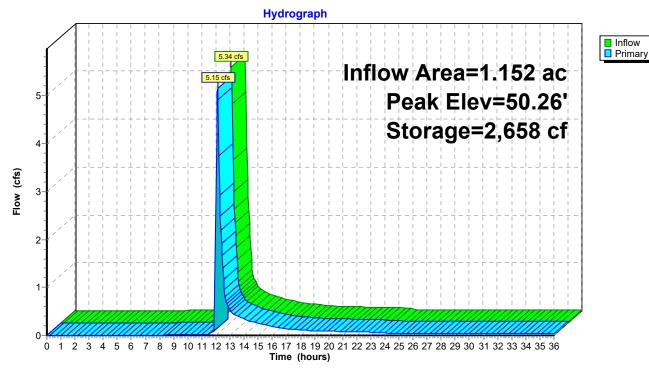
Elevation	Surf.Area	Inc.Store	Cum.Store (cubic-feet)
(feet)	(sq-ft)	(cubic-feet)	
46.00	600	0	0
48.00	600	1,200	1,200
49.00	957	779	1,979
50.00	1,373	1,165	3,144
50.50	1,695	767	3,911
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
46.00	600	0	0
46.50	600	300	300
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
46.50	600	0	0
47.83	600	798	798
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
47.83	600	0	0
48.00	600	102	102

17211.00 Arlington HS - Proposed Conditions - NOI Res wype *III 24-hr* 25 yr Rainfall=6.35" Prepared by Samiotes Engineering Printed 5/28/2020

Page 113

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Device 3	46.00'	1.020 in/hr Exfiltration over Surface area
#2	Device 3	50.00'	24.0" x 48.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#3	Primary	46.00'	15.0" Round Culvert
			L= 26.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 46.00' / 45.87' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE_smooth interior_Flow Area= 1.23 sf


Primary OutFlow Max=5.03 cfs @ 12.12 hrs HW=50.25' TW=0.00' (Dynamic Tailwater)

-3=Culvert (Passes 5.03 cfs of 8.89 cfs potential flow)

1=Exfiltration (Exfiltration Controls 0.04 cfs)

-2=Orifice/Grate (Weir Controls 4.99 cfs @ 1.64 fps)

Pond 3P: rain garden#3 cascading

17211.00 Arlington HS - Proposed Conditions - NOI Resuppe III 24-hr 25 yr Rainfall=6.35"

Prepared by Samiotes Engineering

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 114

Summary for Pond 4P: UGS-1

Inflow Area = 1.705 ac, 60.59% Impervious, Inflow Depth = 4.50" for 25 yr event Inflow 8.50 cfs @ 12.09 hrs, Volume= 0.639 af 8.48 cfs @ 12.10 hrs, Volume= Outflow 0.601 af, Atten= 0%, Lag= 0.6 min Discarded = 0.04 cfs @ 7.70 hrs, Volume= 0.103 af 8.44 cfs @ 12.10 hrs, Volume= 0.498 af Primary =

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 44.02' @ 12.10 hrs Surf.Area= 1,672 sf Storage= 4,722 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 93.7 min (889.3 - 795.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	39.50'	2,099 cf	29.92'W x 55.89'L x 5.50'H Field A
			9,196 cf Overall - 3,198 cf Embedded = 5,998 cf x 35.0% Voids
#2A	40.25'	3,198 cf	ADS_StormTech MC-3500 d +Capx 28 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			28 Chambers in 4 Rows
			Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf
		5,297 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	39.25'	24.0" Round Culvert L= 50.0' Ke= 0.500
	•		Inlet / Outlet Invert= 39.25' / 38.75' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 3.14 sf
#2	Device 1	43.67'	5.0' long x 4.00' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)
#3	Discarded	39.50'	1.020 in/hr Exfiltration over Surface area
#4	Device 1	42.42'	9.0" Vert. Orifice/Grate X 3 rows with 6.0" cc spacing C= 0.600

Discarded OutFlow Max=0.04 cfs @ 7.70 hrs HW=39.59' (Free Discharge) **T_3=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=8.41 cfs @ 12.10 hrs HW=44.02' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 8.41 cfs of 29.35 cfs potential flow)

—2=Sharp-Crested Rectangular Weir (Weir Controls 3.27 cfs @ 1.92 fps)

-4=Orifice/Grate (Orifice Controls 5.14 cfs @ 4.08 fps)

Page 115

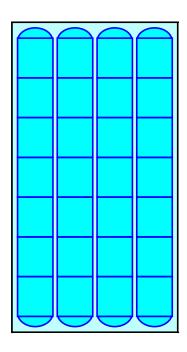
Pond 4P: UGS-1 - Chamber Wizard Field A

Chamber Model = ADS_StormTechMC-3500 d +Cap (ADS StormTech® MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing

7 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 53.89' Row Length +12.0" End Stone x 2 = 55.89' Base Length

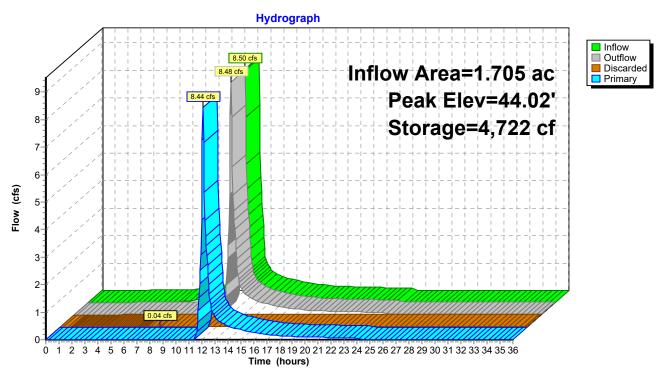

4 Rows x 77.0" Wide + 9.0" Spacing x 3 + 12.0" Side Stone x 2 = 29.92' Base Width 9.0" Base + 45.0" Chamber Height + 12.0" Cover = 5.50' Field Height

28 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 4 Rows = 3,197.9 cf Chamber Storage

9,196.2 cf Field - 3,197.9 cf Chambers = 5,998.4 cf Stone x 35.0% Voids = 2,099.4 cf Stone Storage

Chamber Storage + Stone Storage = 5,297.3 cf = 0.122 af Overall Storage Efficiency = 57.6% Overall System Size = 55.89' x 29.92' x 5.50'

28 Chambers 340.6 cy Field 222.2 cy Stone



Page 116

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Pond 4P: UGS-1

Page 117

Summary for Pond 5P: rain garden#1 cascading

Inflow Area = 0.725 ac, 65.66% Impervious, Inflow Depth = 4.63" for 25 yr event

Inflow = 3.77 cfs @ 12.09 hrs, Volume= 0.280 af

Outflow = 3.78 cfs @ 12.09 hrs, Volume= 0.276 af, Atten= 0%, Lag= 0.3 min

Primary = 0.01 cfs @ 12.09 hrs, Volume= 0.025 af Secondary = 3.77 cfs @ 12.09 hrs, Volume= 0.251 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 62.16' @ 12.09 hrs Surf.Area= 528 sf Storage= 631 cf

Flood Elev= 63.00' Surf.Area= 660 sf Storage= 1,132 cf

Plug-Flow detention time= 51.3 min calculated for 0.275 af (98% of inflow)

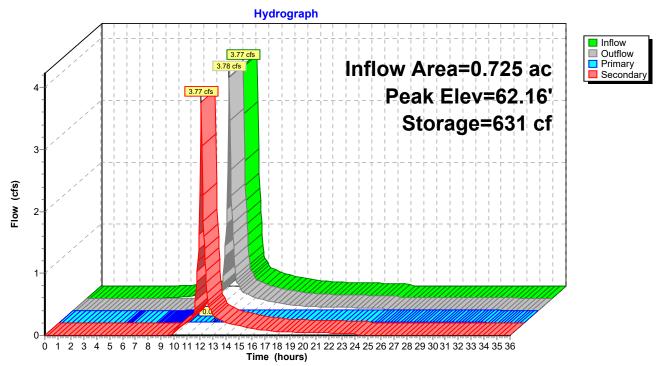
Center-of-Mass det. time= 43.2 min (841.7 - 798.6)

Volume	Invert	Avail.Storage	Storage Description
#1	58.50'	1,048 cf	Rain Garden Envelope (Prismatic)Listed below (Recalc)
			1,348 cf Overall - 300 cf Embedded = 1,048 cf
#2	58.50'	30 cf	crush stone (Prismatic)Listed below (Recalc) Inside #1
			75 cf Overall x 40.0% Voids
#3	59.00'	50 cf	Bio Media (Prismatic)Listed below (Recalc) Inside #1
			199 cf Overall x 25.0% Voids
#4	60.33'	5 cf	Mulch (Prismatic)Listed below (Recalc) Inside #1
			26 cf Overall x 20.0% Voids

1,132 cf Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
58.50	150	0	7
60.50	150	300	300
61.00	236	97	397
62.00	503	370	766
63.00	660	582	1,348
Elevation (feet) 58.50 59.00	Surf.Area	Inc.Store	Cum.Store
	(sq-ft)	(cubic-feet)	(cubic-feet)
	150	0	0
	150	75	75
Elevation (feet) 59.00 60.33	Surf.Area	Inc.Store	Cum.Store
	(sq-ft)	(cubic-feet)	(cubic-feet)
	150	0	0
	150	199	199
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
60.33	150	0	0
60.50	150	26	26

17211.00 Arlington HS - Proposed Conditions - NOI Resuppe III 24-hr 25 yr Rainfall=6.35" Prepared by Samiotes Engineering Printed 5/28/2020 Page 118


HydroCAD® 10.0	00-24 s/n 03575	© 2018 HydroCAD	Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Device 3	58.50'	1.020 in/hr Exfiltration over Surface area
#2	Secondary	62.00'	25.0' long x 3.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.92 2.97 3.07 3.32
#3	Primary	58.50'	8.0" Round Culvert L= 20.0' Ke= 0.500
			Inlet / Outlet Invert= 58.50' / 58.40' S= 0.0050 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.35 sf

Primary OutFlow Max=0.01 cfs @ 12.09 hrs HW=62.15' TW=54.68' (Dynamic Tailwater) **-3=Culvert** (Passes 0.01 cfs of 3.06 cfs potential flow) 1=Exfiltration (Exfiltration Controls 0.01 cfs)

Secondary OutFlow Max=3.71 cfs @ 12.09 hrs HW=62.15' TW=54.68' (Dynamic Tailwater) -2=Broad-Crested Rectangular Weir (Weir Controls 3.71 cfs @ 0.96 fps)

Pond 5P: rain garden#1 cascading

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 119

☐ Inflow☐ Primary

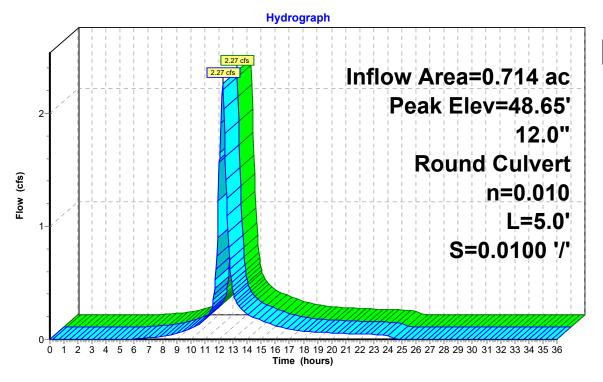
Summary for Pond BB 01 B: BB 01 B

Inflow Area = 0.714 ac, 1.93% Impervious, Inflow Depth = 4.41" for 25 yr event

Inflow = 2.27 cfs @ 12.26 hrs, Volume= 0.262 af

Outflow = 2.27 cfs @ 12.26 hrs, Volume= 0.262 af, Atten= 0%, Lag= 0.0 min

Primary = 2.27 cfs @ 12.26 hrs, Volume= 0.262 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 48.65' @ 12.26 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	47.63'	12.0" Round Culvert L= 5.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 47.63' / 47.58' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=2.26 cfs @ 12.26 hrs HW=48.64' TW=46.87' (Dynamic Tailwater) 1=Culvert (Barrel Controls 2.26 cfs @ 3.52 fps)

Pond BB 01 B: BB 01 B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 120

Summary for Pond BB 01 S: BB 01 S

Inflow Area = 0.714 ac, 1.93% Impervious, Inflow Depth = 4.41" for 25 yr event

Inflow = 2.27 cfs @ 12.26 hrs, Volume= 0.262 af

Outflow = 0.41 cfs @ 13.02 hrs, Volume= 0.262 af, Atten= 82%, Lag= 46.0 min

Primary = 0.41 cfs @ 13.02 hrs, Volume= 0.262 af

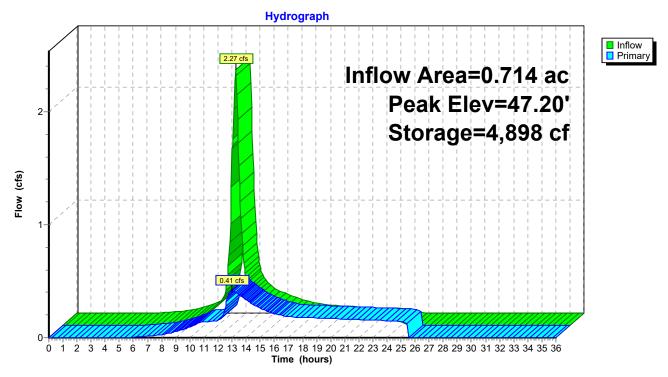
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 47.20' @ 13.02 hrs Surf.Area= 0 sf Storage= 4,898 cf

Plug-Flow detention time= 192.5 min calculated for 0.262 af (100% of inflow)

Center-of-Mass det. time= 192.4 min (1,005.0 - 812.6)

Volume	Inver	Avail.Sto	rage Storag	ge Description
#1	45.65	8,01	17 cf Custo	m Stage DataListed below
Elevatio		nc.Store bic-feet)	Cum.Store (cubic-feet)	
	, , ,	/		
45.6	_	0	0	
46.4	l8	16	16	
46.9	98	3,378	3,394	
47.4	18	3,405	6,799	
47.9	98	1,218	8,017	
		, -	- , -	
Device	Routing	Invert	Outlet Device	ces
#1	Primary	45.65'	2.5" Vert. C	Orifice/Grate C= 0.600
#2	Primary	46.98'	4.0" Vert. C	Orifice/Grate C= 0.600
#3	Primary	46.98'	5.0" Vert. C	Orifice/Grate C= 0.600

Primary OutFlow Max=0.41 cfs @ 13.02 hrs HW=47.20' TW=45.58' (Dynamic Tailwater)


—1=Orifice/Grate (Orifice Controls 0.20 cfs @ 5.79 fps)

—2=Orifice/Grate (Orifice Controls 0.10 cfs @ 1.60 fps)

-3=Orifice/Grate (Orifice Controls 0.12 cfs @ 1.60 fps)

Page 121

Pond BB 01 S: BB 01 S

Printed 5/28/2020

Page 122

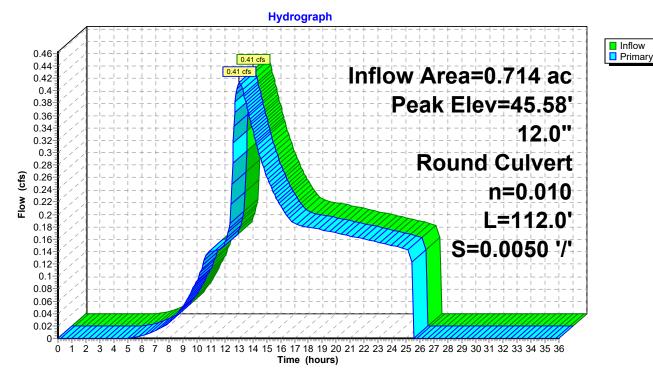
HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Summary for Pond BB 06 B: BB 06 B

Inflow Area = 0.714 ac, 1.93% Impervious, Inflow Depth = 4.41" for 25 yr event

Inflow = 0.41 cfs @ 13.02 hrs, Volume= 0.262 af

Outflow = 0.41 cfs @ 13.02 hrs, Volume= 0.262 af, Atten= 0%, Lag= 0.0 min


Primary = 0.41 cfs @ 13.02 hrs, Volume= 0.262 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 45.58' @ 13.02 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	45.25'	12.0" Round Culvert
			L= 112.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 45.25' / 44.69' S= 0.0050 '/' Cc= 0.900
			n= 0.010 Flow Area= 0.79 sf

Primary OutFlow Max=0.41 cfs @ 13.02 hrs HW=45.58' TW=44.84' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.41 cfs @ 2.69 fps)

Pond BB 06 B: BB 06 B

Printed 5/28/2020

Page 123

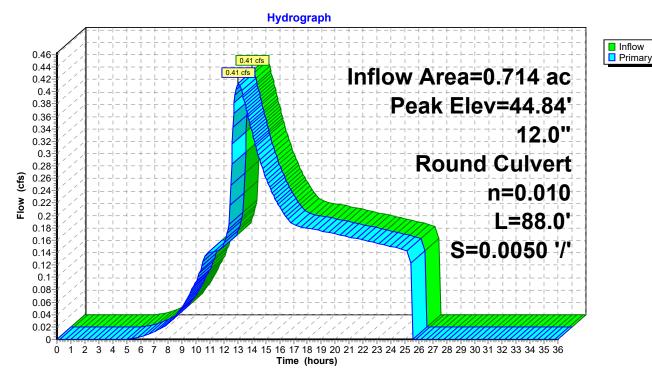
HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Summary for Pond BB 07 B: BB 07 B

Inflow Area = 0.714 ac, 1.93% Impervious, Inflow Depth = 4.41" for 25 yr event

Inflow = 0.41 cfs @ 13.02 hrs, Volume= 0.262 af

Outflow = 0.41 cfs @ 13.02 hrs, Volume= 0.262 af, Atten= 0%, Lag= 0.0 min


Primary = 0.41 cfs @ 13.02 hrs, Volume= 0.262 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 44.84' @ 13.28 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	44.50'	12.0" Round Culvert L= 88.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 44.50' / 44.06' S= 0.0050 '/' Cc= 0.900
π ι	i illilaly	44.50	L= 88.0' CPP, square edge headwall, Ke= 0.500

Primary OutFlow Max=0.41 cfs @ 13.02 hrs HW=44.84' TW=44.34' (Dynamic Tailwater) 1=Culvert (Outlet Controls 0.41 cfs @ 2.60 fps)

Pond BB 07 B: BB 07 B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 124

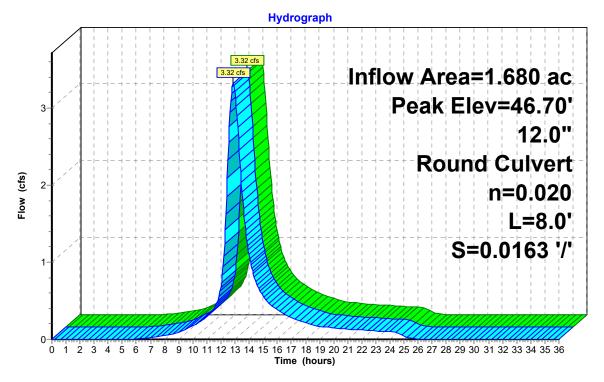
Inflow
□ Primary

Summary for Pond BB 11 B: BB 11 B

Inflow Area = 1.680 ac, 0.00% Impervious, Inflow Depth = 4.63" for 25 yr event

Inflow = 3.32 cfs @ 12.87 hrs, Volume= 0.649 af

Outflow = 3.32 cfs @ 12.87 hrs, Volume= 0.649 af, Atten= 0%, Lag= 0.0 min


Primary = 3.32 cfs @ 12.87 hrs, Volume= 0.649 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 46.70' @ 12.87 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	45.25'	12.0" Round Culvert L= 8.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 45.25' / 45.12' S= 0.0163 '/' Cc= 0.900 n= 0.020, Flow Area= 0.79 sf

Primary OutFlow Max=3.32 cfs @ 12.87 hrs HW=46.70' TW=45.45' (Dynamic Tailwater) 1=Culvert (Barrel Controls 3.32 cfs @ 4.22 fps)

Pond BB 11 B: BB 11 B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 125

Summary for Pond BB 11 S: BB 11 S

Inflow Area = 1.680 ac, 0.00% Impervious, Inflow Depth = 4.63" for 25 yr event

Inflow = 3.32 cfs @ 12.87 hrs, Volume= 0.649 af

Outflow = 2.06 cfs @ 13.44 hrs, Volume= 0.649 af, Atten= 38%, Lag= 34.4 min

Primary = 2.06 cfs @ 13.44 hrs, Volume= 0.649 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 45.77' @ 13.44 hrs Surf.Area= 0 sf Storage= 5,009 cf

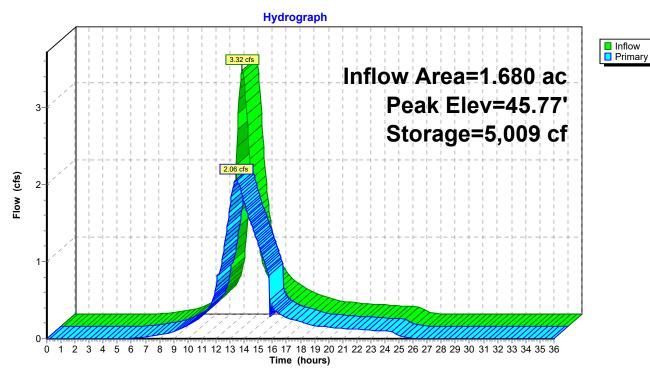
Plug-Flow detention time= 20.3 min calculated for 0.649 af (100% of inflow)

Center-of-Mass det. time= 19.9 min (874.9 - 855.0)

Volume	In	vert Ava	il.Storage	e Storage Description
#1	44	.14'	7,432 cf	cf Custom Stage DataListed below
Elevatio		Inc.Store (cubic-feet)		um.Store ubic-feet)
44.1	14	0		0
44.9	97	16		16
45.4	17	3,131		3,147
45.9	97	3,156		6,303
46.4	17	1,129		7,432
Device	Routing	<i>.</i>		utlet Devices
шл	Duine	. 1.	1 1 1 1 7 5	Ell Vant Onifica/Onata C - 0.000

Device	Routing	invert	Outlet Devices	
#1	Primary	44.14'	2.5" Vert. Orifice/Grate	C= 0.600
#2	Primary	44.47'	8.0" Vert. Orifice/Grate	C= 0.600
#3	Primary	45.47'	6.0" Vert. Orifice/Grate	C= 0.600

Primary OutFlow Max=2.06 cfs @ 13.44 hrs HW=45.76' TW=44.41' (Dynamic Tailwater)


-1=Orifice/Grate (Orifice Controls 0.19 cfs @ 5.61 fps)

-2=Orifice/Grate (Orifice Controls 1.65 cfs @ 4.72 fps)

-3=Orifice/Grate (Orifice Controls 0.22 cfs @ 1.85 fps)

Page 126

Pond BB 11 S: BB 11 S

Printed 5/28/2020

Inflow
Primary

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

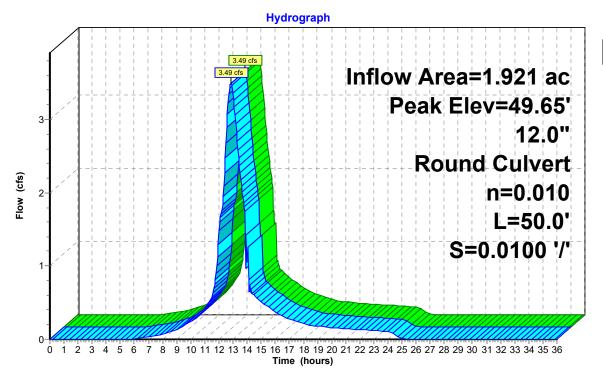
Page 127

Summary for Pond PR-4: SB 01 DMH

Inflow Area = 1.921 ac, 1.31% Impervious, Inflow Depth = 4.59" for 25 yr event

Inflow = 3.49 cfs @ 12.84 hrs, Volume= 0.734 af

Outflow = 3.49 cfs @ 12.84 hrs, Volume= 0.734 af, Atten= 0%, Lag= 0.0 min


Primary = 3.49 cfs @ 12.84 hrs, Volume= 0.734 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 49.65' @ 12.84 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	48.30'	12.0" Round Culvert
			L= 50.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 48.30' / 47.80' S= 0.0100 '/' Cc= 0.900
			n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=3.49 cfs @ 12.84 hrs HW=49.65' TW=0.00' (Dynamic Tailwater) 1=Culvert (Inlet Controls 3.49 cfs @ 4.44 fps)

Pond PR-4: SB 01 DMH

Printed 5/28/2020

Page 128

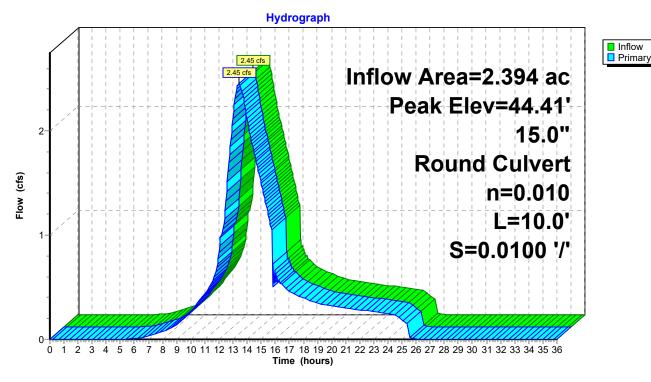
HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Summary for Pond PR-5: DMH 1

Inflow Area = 2.394 ac, 0.58% Impervious, Inflow Depth = 4.57" for 25 yr event

Inflow = 2.45 cfs @ 13.41 hrs, Volume= 0.911 af

Outflow = 2.45 cfs @ 13.41 hrs, Volume= 0.911 af, Atten= 0%, Lag= 0.0 min


Primary = 2.45 cfs @ 13.41 hrs, Volume= 0.911 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 44.41' @ 13.41 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	43.50'	15.0" Round Culvert
			L= 10.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 43.50' / 43.40' S= 0.0100 '/' Cc= 0.900
			n= 0.010 Flow Area= 1.23 sf

Primary OutFlow Max=2.45 cfs @ 13.41 hrs HW=44.41' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 2.45 cfs @ 3.59 fps)

Pond PR-5: DMH 1

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

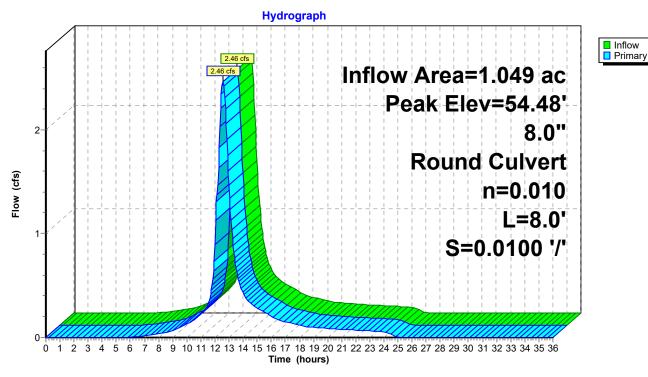
Page 129

Summary for Pond SB 01 B: SB 01 B

Inflow Area = 1.049 ac, 2.41% Impervious, Inflow Depth = 4.55" for 25 yr event

Inflow = 2.46 cfs @ 12.56 hrs, Volume= 0.397 af

Outflow = 2.46 cfs @ 12.56 hrs, Volume= 0.397 af, Atten= 0%, Lag= 0.0 min


Primary = 2.46 cfs @ 12.56 hrs, Volume= 0.397 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 54.48' @ 12.56 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	52.00'	8.0" Round Culvert L= 8.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 52.00' / 51.92' S= 0.0100'/' Cc= 0.900
			n= 0.010 Flow Area= 0.35 sf

Primary OutFlow Max=2.46 cfs @ 12.56 hrs HW=54.47' TW=51.81' (Dynamic Tailwater) 1=Culvert (Inlet Controls 2.46 cfs @ 7.04 fps)

Pond SB 01 B: SB 01 B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

<u>Page 130</u>

Summary for Pond SB 01 S: SB 01 S

Inflow Area = 1.049 ac, 2.41% Impervious, Inflow Depth = 4.55" for 25 yr event

Inflow = 2.46 cfs @ 12.56 hrs, Volume= 0.397 af

Outflow = 1.86 cfs @ 12.86 hrs, Volume= 0.397 af, Atten= 25%, Lag= 18.3 min

Primary = 1.86 cfs @ 12.86 hrs, Volume= 0.397 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 51.94' @ 12.87 hrs Surf.Area= 0 sf Storage= 2,047 cf

Plug-Flow detention time= 8.4 min calculated for 0.397 af (100% of inflow)

Center-of-Mass det. time= 8.0 min (839.9 - 832.0)

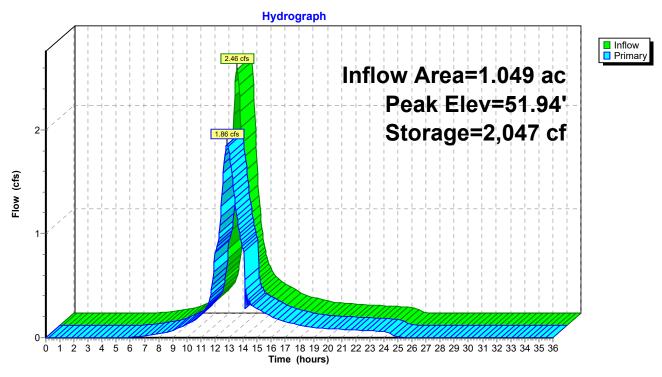
Volume	Inver	t Avail.Sto	rage Storag	ge Description
#1	50.64	3,0	84 cf Custo	om Stage DataListed below
Elevatio		nc.Store	Cum.Store	
(fee	t) (cu	bic-feet)	(cubic-feet)	
50.6	4	0	0	
51.4	.7	16	16	
51.9	7	2,170	2,186	
52.4	.7	898	3,084	
Device	Routing	Invert	Outlet Devi	ces
#1	Primary	50.64'	4.0" Vert. C	Orifice/Grate C= 0.600
#2	Primary	50.97'	6.0" Vert. C	Orifice/Grate C= 0.600

Primary OutFlow Max=1.85 cfs @ 12.86 hrs HW=51.94' TW=50.81' (Dynamic Tailwater)

51.47' **8.0" Vert. Orifice/Grate** C= 0.600

-1=Orifice/Grate (Orifice Controls 0.45 cfs @ 5.11 fps)

#3


Primary

-2=Orifice/Grate (Orifice Controls 0.80 cfs @ 4.08 fps)

-3=Orifice/Grate (Orifice Controls 0.61 cfs @ 2.33 fps)

Page 131

Pond SB 01 S: SB 01 S

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 132

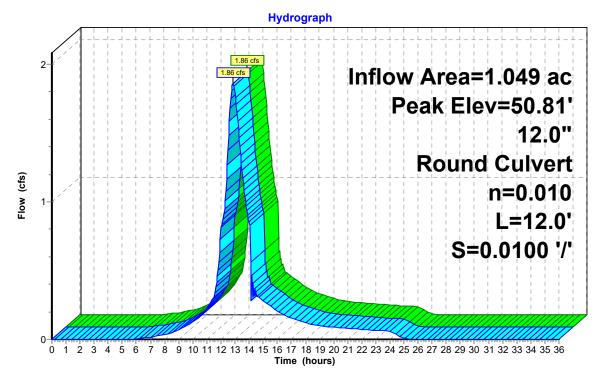
Inflow
Primary

Summary for Pond SB 02 B: SB 02 B

Inflow Area = 1.049 ac, 2.41% Impervious, Inflow Depth = 4.55" for 25 yr event

Inflow = 1.86 cfs @ 12.86 hrs, Volume= 0.397 af

Outflow = 1.86 cfs @ 12.86 hrs, Volume= 0.397 af, Atten= 0%, Lag= 0.0 min


Primary = 1.86 cfs @ 12.86 hrs, Volume= 0.397 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 50.81' @ 12.86 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	49.97'	12.0" Round Culvert L= 12.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 49.97' / 49.85' S= 0.0100'/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.86 cfs @ 12.86 hrs HW=50.81' TW=49.65' (Dynamic Tailwater) 1=Culvert (Barrel Controls 1.86 cfs @ 3.55 fps)

Pond SB 02 B: SB 02 B

Printed 5/28/2020

Inflow
Primary

Page 133

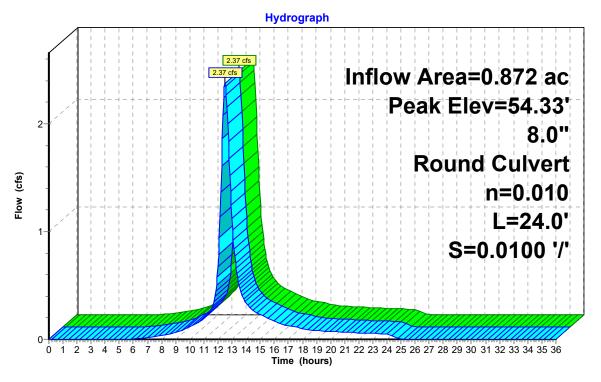
HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Summary for Pond SB 11 B: SB 11 B

Inflow Area = 0.872 ac, 0.00% Impervious, Inflow Depth = 4.63" for 25 yr event

Inflow = 2.37 cfs @ 12.50 hrs, Volume= 0.337 af

Outflow = 2.37 cfs @ 12.50 hrs, Volume= 0.337 af, Atten= 0%, Lag= 0.0 min


Primary = 2.37 cfs @ 12.50 hrs, Volume= 0.337 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 54.33' @ 12.50 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	52.00'	8.0" Round Culvert L= 24.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 52.00' / 51.76' S= 0.0100'/' Cc= 0.900 n= 0.010, Flow Area= 0.35 sf

Primary OutFlow Max=2.37 cfs @ 12.50 hrs HW=54.32' TW=51.96' (Dynamic Tailwater) 1=Culvert (Inlet Controls 2.37 cfs @ 6.79 fps)

Pond SB 11 B: SB 11 B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

<u>Page 134</u>

Summary for Pond SB 11 S: SB 11 S

Inflow Area = 0.872 ac, 0.00% Impervious, Inflow Depth = 4.63" for 25 yr event

Inflow = 2.37 cfs @ 12.50 hrs, Volume= 0.337 af

Outflow = 1.64 cfs @ 12.81 hrs, Volume= 0.337 af, Atten= 31%, Lag= 18.6 min

Primary = 1.64 cfs @ 12.81 hrs, Volume= 0.337 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

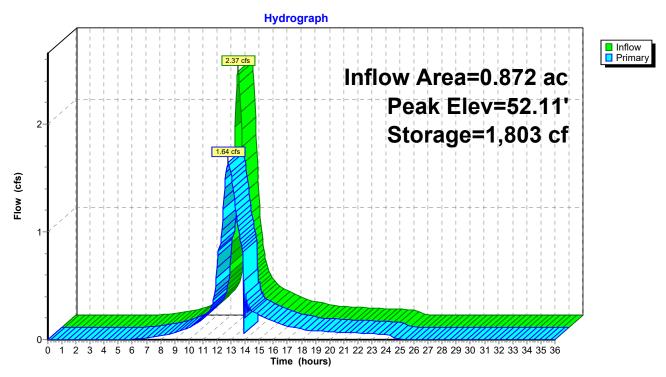
Peak Elev= 52.11' @ 12.81 hrs Surf.Area= 0 sf Storage= 1,803 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 7.3 min (834.9 - 827.7)

Volume	In	vert Ava	il.Storage	Storage Description	ion
#1	50	.84'	2,892 cf	Custom Stage Da	PataListed below
Elevatio		Inc.Store (cubic-feet)	-	n.Store ic-feet)	
50.8	34	0		0	
51.6	67	16		16	
52.1	17	2,035		2,051	
52.6	67	841		2,892	
Device	Routing	g Ir	nvert Out	let Devices	
#1	Primar	/ 50	0.84' 4.0 '	" Vert. Orifice/Grate	te C= 0.600
#2	Primar	, 5°	1.17' 6.0 '	" Vert. Orifice/Grate	te C= 0.600
#3	Primar	, 5°	1.67' 6.0 '	" Vert. Orifice/Grate	te C= 0.600

Primary OutFlow Max=1.64 cfs @ 12.81 hrs HW=52.11' TW=50.86' (Dynamic Tailwater)


1=Orifice/Grate (Orifice Controls 0.44 cfs @ 5.05 fps)

—2=Orifice/Grate (Orifice Controls 0.78 cfs @ 3.99 fps)

-3=Orifice/Grate (Orifice Controls 0.41 cfs @ 2.25 fps)

Page 135

Pond SB 11 S: SB 11 S

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 136

Inflow Primary

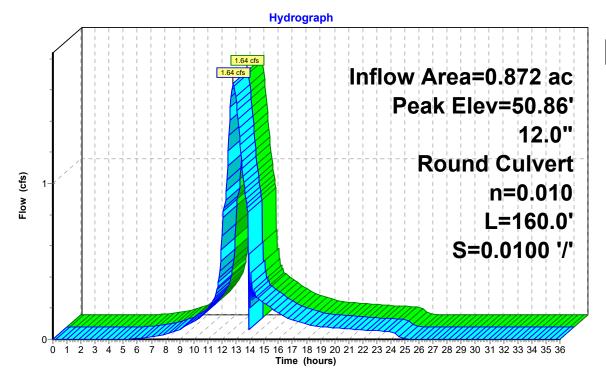
Summary for Pond SB 12 B: SB 12 B

Inflow Area = 0.872 ac, 0.00% Impervious, Inflow Depth = 4.63" for 25 yr event

Inflow 1.64 cfs @ 12.81 hrs, Volume= 0.337 af

Outflow 1.64 cfs @ 12.81 hrs, Volume= 0.337 af, Atten= 0%, Lag= 0.0 min

Primary 1.64 cfs @ 12.81 hrs, Volume= 0.337 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 50.86' @ 12.81 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	50.17'	12.0" Round Culvert L= 160.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 50.17' / 48.57' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.64 cfs @ 12.81 hrs HW=50.86' TW=49.65' (Dynamic Tailwater) 1=Culvert (Inlet Controls 1.64 cfs @ 2.83 fps)

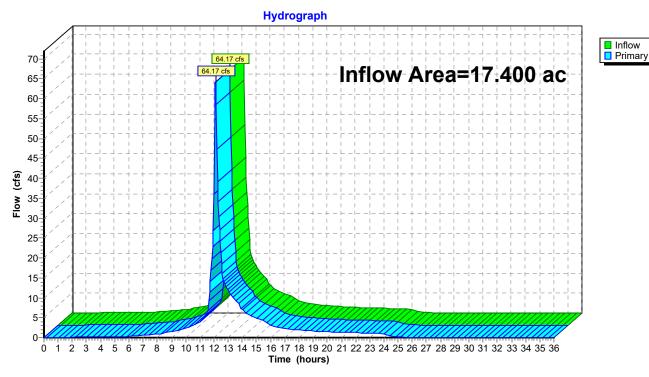
Pond SB 12 B: SB 12 B

Printed 5/28/2020

Page 137

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Summary for Link POA: POA


Inflow Area = 17.400 ac, 49.60% Impervious, Inflow Depth > 4.52" for 25 yr event

Inflow = 64.17 cfs @ 12.11 hrs, Volume= 6.559 af

Primary = 64.17 cfs @ 12.11 hrs, Volume= 6.559 af, Atten= 0%, Lag= 0.0 min

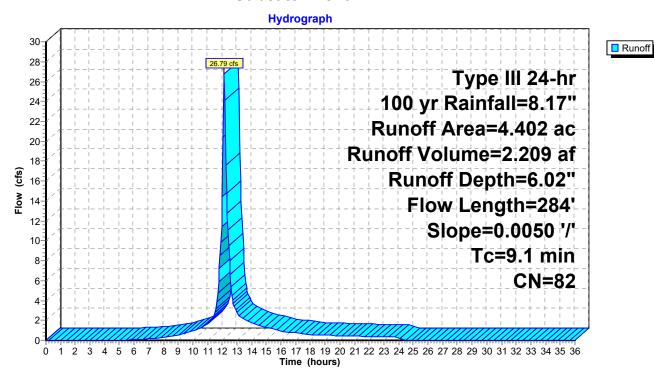
Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Link POA: POA

Printed 5/28/2020

Page 138

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC


Summary for Subcatchment PR-1: PR-1

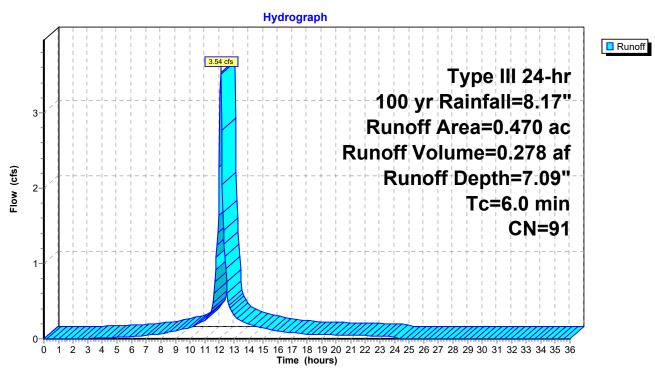
Runoff = 26.79 cfs @ 12.13 hrs, Volume= 2.209 af, Depth= 6.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

_	Area	(ac) C				
	1.	892 6	61 >75°	% Grass c	over, Good	, HSG B
_	2.	510	98 Pave	ed parking	, HSG B	
	4.	402 8	32 Weig	ghted Aver	age	
	1.	892	42.9	8% Pervio	us Area	
	2.	510	57.0	2% Imper	ious Area	
	_				_	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.2	50	0.0050	0.69		Sheet Flow, A-B
						Smooth surfaces n= 0.011 P2= 3.20"
	7.9	234	0.0050	0.49		Shallow Concentrated Flow, B-C
_						Short Grass Pasture Kv= 7.0 fps
	9.1	284	Total			

Subcatchment PR-1: PR-1

Page 139


Summary for Subcatchment PR-1A: PR-1A

Runoff = 3.54 cfs @ 12.09 hrs, Volume= 0.278 af, Depth= 7.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

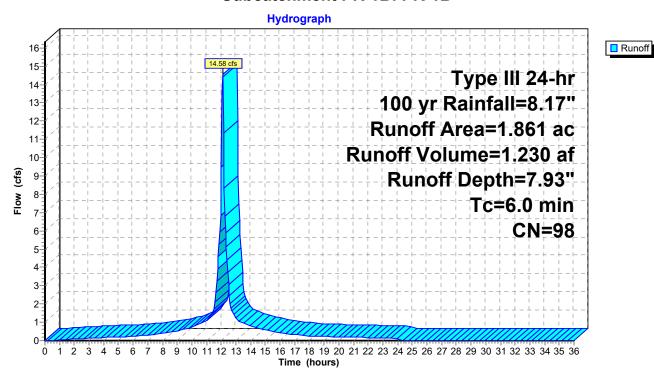
Area	(ac)	CN	N Description								
0.	090	61	>75%	√ Grass co	over, Good	I, HSG B					
0.	380	98	Pave	ed parking	, HSG B						
0.	470	91	Weig	hted Aver	age						
0.	090		19.1	5% Pervio	us Area						
0.	380		80.8	5% Imperv	ious Area						
_			01		0 :						
Tc Length Slope Velocity Capacity				,	. ,	Description					
(min) (feet) (ft/ft) (ft/sec) (cfs)					(cfs)						
6.0						Direct Entry,					

Subcatchment PR-1A: PR-1A

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 140


Summary for Subcatchment PR-1B: PR-1B

Runoff = 14.58 cfs @ 12.09 hrs, Volume= 1.230 af, Depth= 7.93"

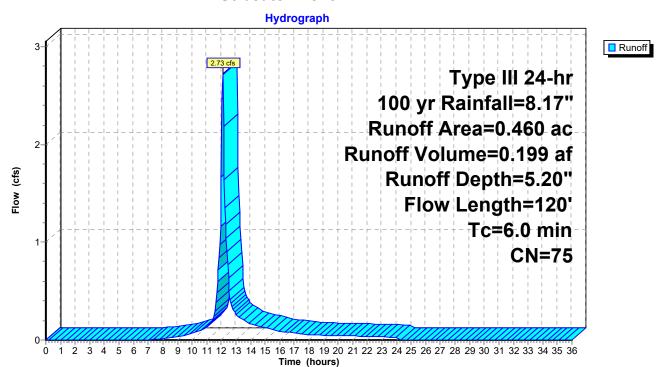
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

_	Area	(ac)	CN	Desc	cription		
	1.	.861	98	Roof	s, HSG B		
_	1.	.861		100.	00% Impe	rvious Area	a
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0						Direct Entry,

Subcatchment PR-1B: PR-1B

Page 141

Summary for Subcatchment PR-1C: PR-1C


Runoff = 2.73 cfs @ 12.09 hrs, Volume= 0.199 af, Depth= 5.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

	Area	(ac) C	N Des	cription		
	0.	020 5	55 Woo	ds, Good,	HSG B	
	0.	260 6	31 >75°	% Grass co	over, Good	, HSG B
	0.	180 9	8 Pave	ed parking	, HSG B	
	0.	460 7	'5 Wei	hted Aver	age	
	0.	280		7% Pervio		
	0.	180	39.1	3% Imperv	ious Area	
				•		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	3.6	20	0.0700	0.09		Sheet Flow, 20' SF
						Woods: Light underbrush n= 0.400 P2= 3.20"
	1.9	40	0.5000	0.35		Sheet Flow, 30' SF
						Grass: Dense n= 0.240 P2= 3.20"
	0.1	12	0.0100	1.61		Shallow Concentrated Flow, 12' SCF
						Unpaved Kv= 16.1 fps
	0.2	48	0.0400	4.06		Shallow Concentrated Flow, 48' SCF
_						Paved Kv= 20.3 fps
		400				T 00 :

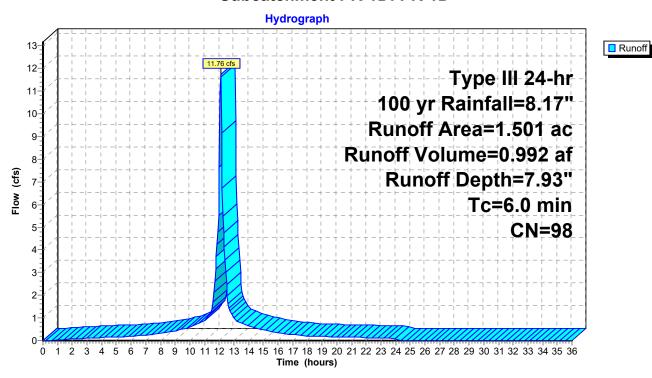
5.8 120 Total, Increased to minimum Tc = 6.0 min

Subcatchment PR-1C: PR-1C

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 142


Summary for Subcatchment PR-1D: PR-1D

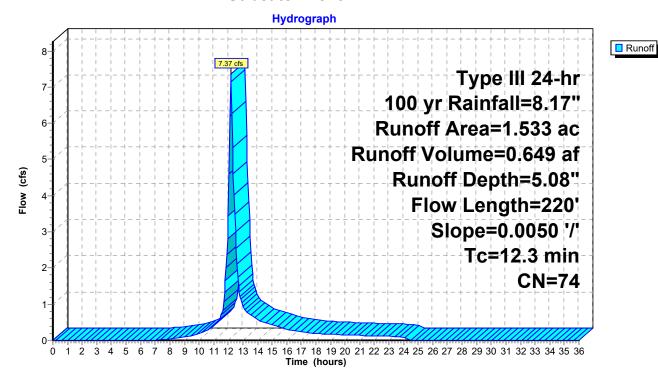
Runoff = 11.76 cfs @ 12.09 hrs, Volume= 0.992 af, Depth= 7.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

	4rea	(ac)	CN	Desc	cription		
	1.	501	98	Roof	s, HSG B		
	1.	501		100.	00% Impe	rvious Area	a
(r	Tc nin)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0						Direct Entry,

Subcatchment PR-1D: PR-1D

Page 143


Summary for Subcatchment PR-1E: PR-1E

Runoff = 7.37 cfs @ 12.17 hrs, Volume= 0.649 af, Depth= 5.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

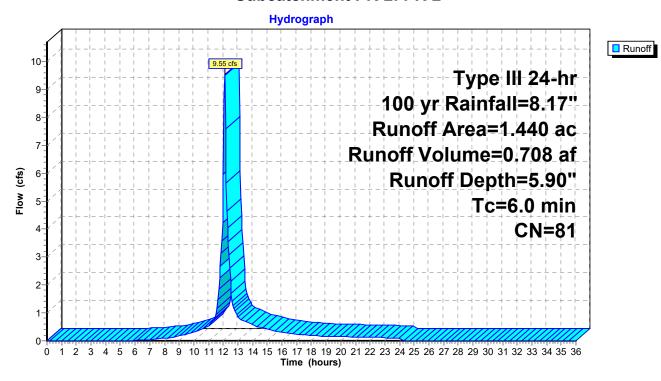
_	Area	(ac) C	N Des	cription		
	1.	000	61 >75°	% Grass c	over, Good	, HSG B
	0.	533	98 Pave	ed parking	, HSG B	
	1.	533	74 Weig	ghted Aver	age	
	1.	000	65.2	3% Pervio	us Area	
	0.	533	34.7	7% Imperv	∕ious Area	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.8	50	0.0050	0.09		Sheet Flow, 50' SF
						Grass: Short n= 0.150 P2= 3.20"
	2.5	170	0.0050	1.14		Shallow Concentrated Flow, 170' SCF
_						Unpaved Kv= 16.1 fps
	12.3	220	Total	•	•	

Subcatchment PR-1E: PR-1E

Printed 5/28/2020

Page 144

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC


Summary for Subcatchment PR-2: PR-2

Runoff = 9.55 cfs @ 12.09 hrs, Volume= 0.708 af, Depth= 5.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

Area	(ac)	(ac) CN Description								
0.	.672	61	>75%	√ Grass co	over, Good	, HSG B				
0.	.768	98	Pave	ed parking	, HSG B					
1.	.440	81	Weig	hted Aver	age					
0.	.672		46.6	7% Pervio	us Area					
0.	0.768			3% Imperv	ious Area					
Тс	Leng	th	Slope	Velocity	Capacity	Description				
(min)	(min) (feet) (ft/ft) (ft/sec) (cfs)									
6.0						Direct Entry,				

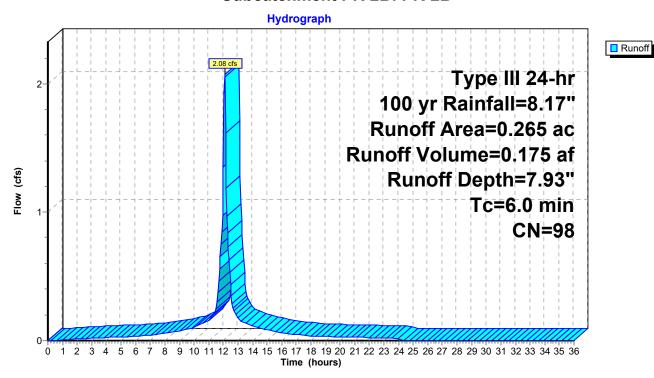
Subcatchment PR-2: PR-2

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 145

Summary for Subcatchment PR-2B: PR-2B


Runoff = 2.08 cfs @ 12.09 hrs, Volume= 0.175 a

0.175 af, Depth= 7.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

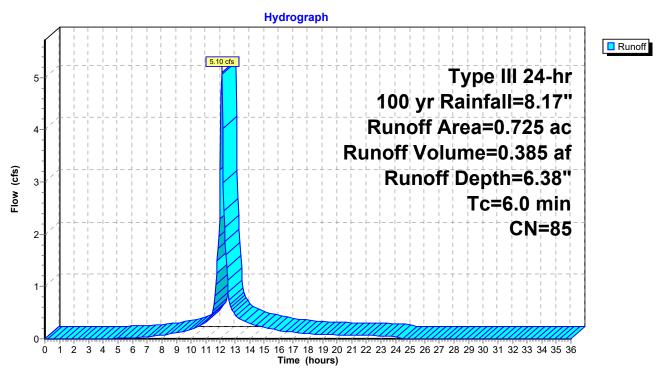
	Area	(ac)	CN	Desc	cription		
	0.	265	98	Roof	s, HSG B		
	0.	265		100.	00% Impe	rvious Area	n e e e e e e e e e e e e e e e e e e e
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	6.0	,	,	. /	•		Direct Entry,

Subcatchment PR-2B: PR-2B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 146


Summary for Subcatchment PR-3A: PR-3A

Runoff = 5.10 cfs @ 12.09 hrs, Volume= 0.385 af, Depth= 6.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

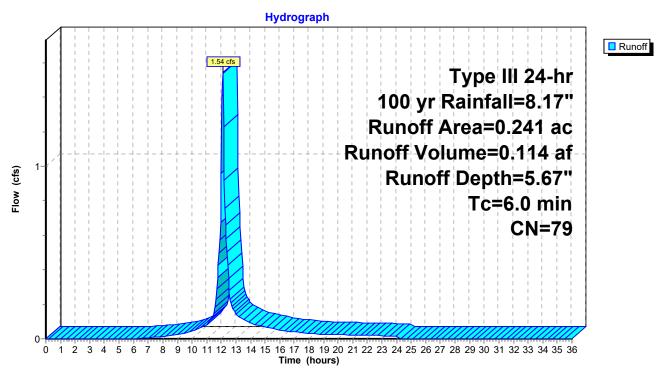
Area	(ac)	CN	Desc	Description							
0.	249	61	>75%	√ Grass co	over, Good	, HSG B					
0.	.476	98	Pave	ed parking	HSG B						
0.	725	85	Weig	hted Aver	age						
0.	249		34.3	4% Pervio	us Area						
0.	0.476			6% Imperv	vious Area						
Тс	Tc Length		Slope	Velocity	Capacity	Description					
(min)	(min) (feet) (ft/ft) (ft/sec) (cfs)										
6.0						Direct Entry,					

Subcatchment PR-3A: PR-3A

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 147


Summary for Subcatchment PR-3B: PR-3B

Runoff = 1.54 cfs @ 12.09 hrs, Volume= 0.114 af, Depth= 5.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

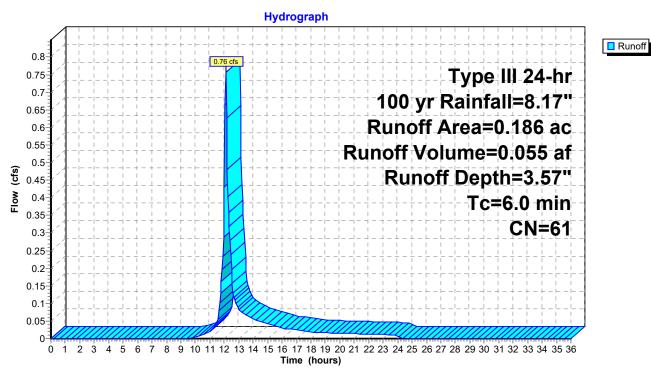
Ar	ea (ac)	CN	Des	Description				
	0.124	61	>75°	% Grass co	over, Good	I, HSG B		
	0.117	98	Pave	ed parking	, HSG B			
	0.241	79	Weig	ghted Aver	age			
	0.124 51.45% Pervious Area							
	0.117			5% Imper	ious Area			
<u>(mi</u>		ngth eet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6	.0					Direct Entry,		

Subcatchment PR-3B: PR-3B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 148


Summary for Subcatchment PR-3C: PR-3C

Runoff = 0.76 cfs @ 12.10 hrs, Volume= 0.055 af, Depth= 3.57"

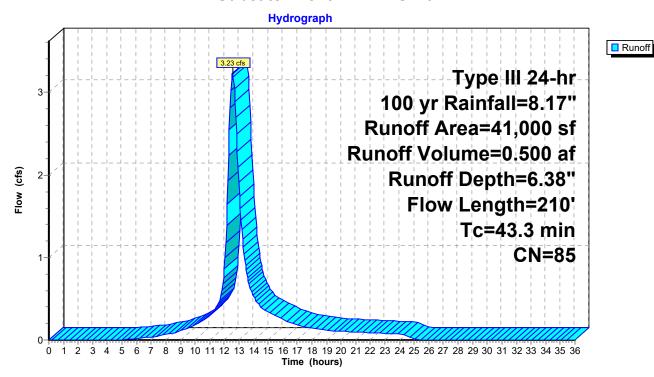
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

	Area	(ac)	CN	Desc	cription			
	0.	0.186 61 >75% Grass cover, Good, HSG B						
	0.	186		100.	00% Pervi	ous Area		
	_			01				
	Tc	Leng	tn :	Slope	Velocity	Capacity	Description	
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		
	6.0	•	•	•			Direct Entry,	

Subcatchment PR-3C: PR-3C

Page 149

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC


Summary for Subcatchment PR-4A: SB 01 A

Runoff = 3.23 cfs @ 12.57 hrs, Volume= 0.500 af, Depth= 6.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

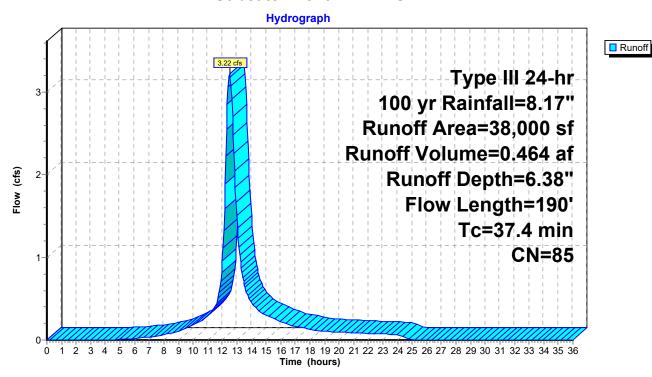
	Α	rea (sf)	CN E	escription		
*		41,000	85 S	YNTHETI	C TURF- P	AD- LINER
		41,000	100.00% Pervious Are			ea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	39.6	110	0.0055	0.05		Sheet Flow, Through Turf Section
	3.7	100	0.0001	0.45	0.16	Grass: Bermuda n= 0.410 P2= 3.20" Pipe Channel, TRENCH DRAIN LEVEL 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.010
	43.3	210	Total			

Subcatchment PR-4A: SB 01 A

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

<u>Page 150</u>


Summary for Subcatchment PR-4B: SB 11 A

Runoff = 3.22 cfs @ 12.50 hrs, Volume= 0.464 af, Depth= 6.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

	Α	rea (sf)	CN [Description		
*		38,000	85 5	YNTHETI	C TURF- P	AD- LINER
		38,000	100.00% Pervious Ar			ea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	33.7	90	0.0055	0.04		Sheet Flow, Through Turf Section
	3.7	100	0.0001	0.45	0.16	Grass: Bermuda n= 0.410 P2= 3.20" Pipe Channel, TRENCH DRAIN LEVEL 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.010
	37 4	190	Total	•	•	

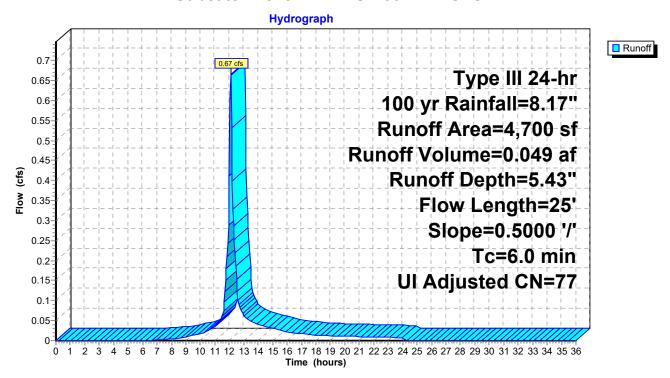
Subcatchment PR-4B: SB 11 A

Summary for Subcatchment PR-4C: SB 00 DPW SLOPE

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Printed 5/28/2020 Page 151

,


Runoff = 0.67 cfs @ 12.09 hrs, Volume= 0.049 af, Depth= 5.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

Α	rea (sf)	CN A	Adj Desc	ription	
	1,100	98	Unco	nnected pa	avement, HSG A
	3,600	74	>75%	6 Grass co	ver, Good, HSG C
	4,700	80	77 Weig	hted Avera	age, UI Adjusted
	3,600		76.6	0% Perviou	us Area
	1,100		23.40	0% Impervi	ious Area
	1,100		100.0	00% Uncor	nnected
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
1.3	25	0.5000	0.32		Sheet Flow, SLOPING LAND
					Grass: Dense n= 0.240 P2= 3.20"
	Tc (min)	3,600 4,700 3,600 1,100 1,100 Tc Length (min) (feet)	1,100 98 3,600 74 4,700 80 3,600 1,100 1,100 Tc Length Slope (min) (feet) (ft/ft)	1,100 98 Uncc 3,600 74 >759 4,700 80 77 Weig 3,600 76.60 1,100 23.40 1,100 100.0 Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec)	1,100 98 Unconnected positions of the state

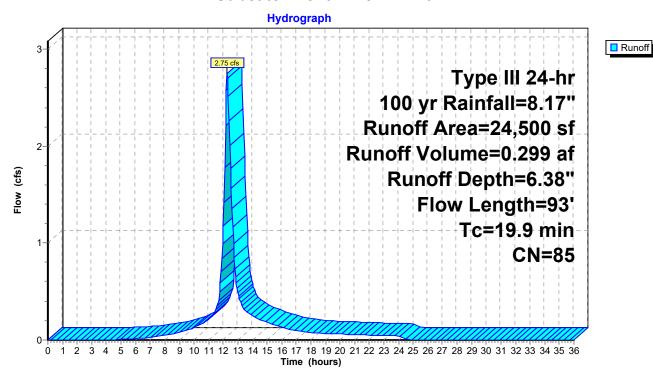
1.3 25 Total, Increased to minimum Tc = 6.0 min

Subcatchment PR-4C: SB 00 DPW SLOPE

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 152


Summary for Subcatchment PR-5A: BB 01 A

Runoff = 2.75 cfs @ 12.27 hrs, Volume= 0.299 af, Depth= 6.38"

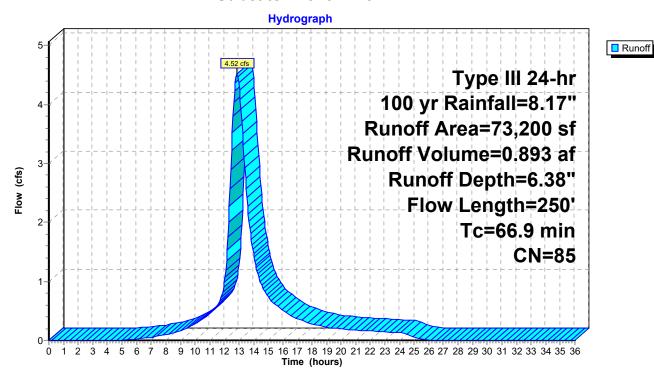
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

	rea (sf)	CN [Description		
*	24,500	85 5	SYNTHETI	C TURF- P	AD- LINER
	24,500	1	00.00% P	ervious Are	ea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
18.2	46	0.0067	0.04	, ,	Sheet Flow, Through Turf Section
1.7	47	0.0001	0.45	0.16	Grass: Bermuda n= 0.410 P2= 3.20" Pipe Channel, TRENCH DRAIN LEVEL 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.010
19.9	93	Total			

Subcatchment PR-5A: BB 01 A

Printed 5/28/2020

Page 153


Summary for Subcatchment PR-5B: BB 11 A

4.52 cfs @ 12.86 hrs, Volume= Runoff 0.893 af, Depth= 6.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

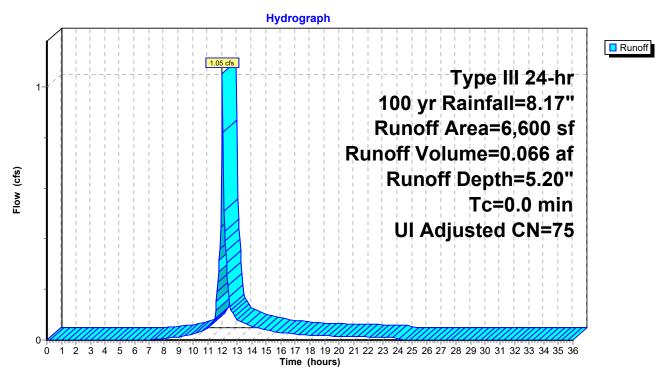
_	Α	rea (sf)	CN I	Description		
*		73,200	85	SYNTHETI	C TURF- P	AD- LINER
		73,200	•	100.00% Pervious		ea
	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description
_	22.1	53	0.0055	0.04		Sheet Flow, Through Turf Section Grass: Bermuda n= 0.410 P2= 3.20"
	43.1	150	0.0083	0.06		Sheet Flow, SYNTHETIC TURF Grass: Bermuda n= 0.410 P2= 3.20"
	1.7	47	0.0001	0.45	0.16	Pipe Channel, TRENCH DRAIN LEVEL 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.010
	66.9	250	Total	·	·	

Subcatchment PR-5B: BB 11 A

Printed 5/28/2020

Page 154

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC


Summary for Subcatchment PR-5C: SLOPE

Runoff = 1.05 cfs @ 12.00 hrs, Volume= 0.066 af, Depth= 5.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=8.17"

Area (sf)	CN	Adj	Description
600	98		Unconnected roofs, HSG C
6,000	74		>75% Grass cover, Good, HSG C
6,600	76	75	Weighted Average, UI Adjusted
6,000			90.91% Pervious Area
600			9.09% Impervious Area
600			100.00% Unconnected

Subcatchment PR-5C: SLOPE

<u>Page 155</u>

Summary for Pond 2P: rain garden#2 cascading

Inflow Area = 0.966 ac, 61.39% Impervious, Inflow Depth > 6.15" for 100 yr event

Inflow = 6.66 cfs @ 12.09 hrs, Volume= 0.495 af

Outflow = 6.67 cfs @ 12.10 hrs, Volume= 0.478 af, Atten= 0%, Lag= 0.5 min

Primary = 0.03 cfs @ 12.10 hrs, Volume= 0.051 af Secondary = 6.64 cfs @ 12.10 hrs, Volume= 0.427 af

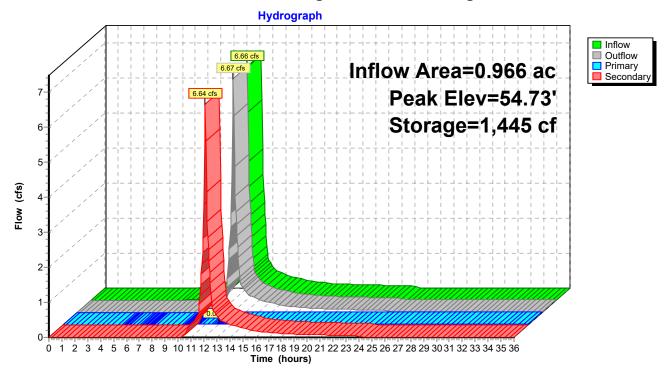
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 54.73' @ 12.10 hrs Surf.Area= 1,153 sf Storage= 1,445 cf Flood Elev= 55.00' Surf.Area= 1,326 sf Storage= 1,784 cf

Plug-Flow detention time= 63.7 min calculated for 0.478 af (97% of inflow) Center-of-Mass det. time= 36.9 min (855.7 - 818.8)

Volume	Invert	Avail.Storage	Storage Description
#1	51.00'	1,557 cf	Rain Garden Envelope (Prismatic)Listed below (Recalc)
			2,357 cf Overall - 800 cf Embedded = 1,557 cf
#2	51.00'	80 cf	crush stone (Prismatic)Listed below (Recalc) Inside #1
			200 cf Overall x 40.0% Voids
#3	51.50'	133 cf	Bio Media (Prismatic)Listed below (Recalc) Inside #1
			532 cf Overall x 25.0% Voids
#4	52.83'	14 cf	Mulch (Prismatic)Listed below (Recalc) Inside #1
			68 cf Overall x 20.0% Voids

1,784 cf Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
51.00	400	0	0
53.00	400	800	800
54.00	694	547	1,347
55.00	1,326	1,010	2,357
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
51.00	400	0	0
51.50	400	200	200
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
51.50	400	0	0
52.83	400	532	532
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
52.83	400	0	0
53.00	400	68	68


17211.00 Arlington HS - Proposed Conditions - NOI Restype III 24-hr 100 yr Rainfall=8.17" Prepared by Samiotes Engineering Printed 5/28/2020 Page 156

Device	Routing	Invert	Outlet Devices
#1	Device 3	51.00'	1.020 in/hr Exfiltration over Surface area
#2	Secondary	54.50'	25.0' long x 3.0' breadth Broad-Crested Rectangular Weir
	•		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.92 2.97 3.07 3.32
#3	Primary	51.00'	12.0" Round Culvert L= 25.0' Ke= 0.500
			Inlet / Outlet Invert= 51.00' / 50.88' S= 0.0048 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.03 cfs @ 12.10 hrs HW=54.73' TW=50.32' (Dynamic Tailwater) -3=Culvert (Passes 0.03 cfs of 6.79 cfs potential flow) 1=Exfiltration (Exfiltration Controls 0.03 cfs)

Secondary OutFlow Max=6.64 cfs @ 12.10 hrs HW=54.73' TW=50.32' (Dynamic Tailwater) -2=Broad-Crested Rectangular Weir (Weir Controls 6.64 cfs @ 1.17 fps)

Pond 2P: rain garden#2 cascading

Page 157

Summary for Pond 3P: rain garden#3 cascading

Inflow Area = 1.152 ac, 51.48% Impervious, Inflow Depth > 5.56" for 100 yr event

Inflow = 7.43 cfs @ 12.10 hrs, Volume= 0.534 af

Outflow = 7.30 cfs @ 12.11 hrs, Volume= 0.492 af, Atten= 2%, Lag= 0.8 min

Primary = 7.30 cfs @ 12.11 hrs, Volume= 0.492 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 50.32' @ 12.11 hrs Surf.Area= 1,582 sf Storage= 2,763 cf Flood Elev= 50.00' Surf.Area= 1,373 sf Storage= 2,283 cf

Plug-Flow detention time= 100.4 min calculated for 0.491 af (92% of inflow)

Center-of-Mass det. time= 42.4 min (896.7 - 854.4)

Volume	Invert	Avail.Storage	Storage Description
#1	46.00'	2,710 cf	Rain Garden Envelope (Prismatic)Listed below (Recalc)
			3,911 cf Overall - 1,200 cf Embedded = 2,710 cf
#2	46.00'	120 cf	crush stone (Prismatic)Listed below (Recalc) Inside #1
			300 cf Overall x 40.0% Voids
#3	46.50'	199 cf	Bio Media (Prismatic)Listed below (Recalc) Inside #1
			798 cf Overall x 25.0% Voids
#4	47.83'	20 cf	Mulch (Prismatic)Listed below (Recalc) Inside #1
			102 cf Overall x 20.0% Voids

3,050 cf Total Available Storage

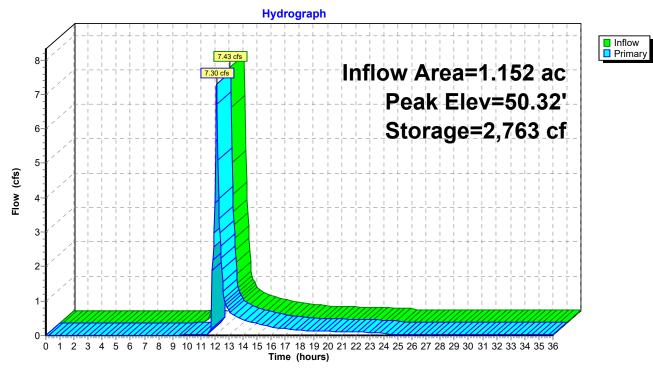
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
46.00	600	0	0
48.00	600	1,200	1,200
49.00	957	779	1,979
50.00	1,373	1,165	3,144
50.50	1,695	767	3,911
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
46.00	600	0	0
46.50	600	300	300
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
46.50	600	0	0
47.83	600	798	798
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
47.83	600	0	0
48.00	600	102	102

17211.00 Arlington HS - Proposed Conditions - NOI Res ype III 24-hr 100 yr Rainfall=8.17" Prepared by Samiotes Engineering Printed 5/28/2020

Page 158

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Device 3	46.00'	1.020 in/hr Exfiltration over Surface area
#2	Device 3	50.00'	24.0" x 48.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#3	Primary	46.00'	15.0" Round Culvert
			L= 26.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 46.00' / 45.87' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf


Primary OutFlow Max=7.10 cfs @ 12.11 hrs HW=50.32' TW=0.00' (Dynamic Tailwater)

—3=Culvert (Passes 7.10 cfs of 8.97 cfs potential flow)

1=Exfiltration (Exfiltration Controls 0.04 cfs)

-2=Orifice/Grate (Weir Controls 7.06 cfs @ 1.85 fps)

Pond 3P: rain garden#3 cascading

17211.00 Arlington HS - Proposed Conditions - NOI Resype III 24-hr 100 yr Rainfall=8.17"

Prepared by Samiotes Engineering

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 159

Summary for Pond 4P: UGS-1

Inflow Area = 1.705 ac, 60.59% Impervious, Inflow Depth = 6.22" for 100 yr event

Inflow 11.62 cfs @ 12.09 hrs, Volume= 0.883 af

11.63 cfs @ 12.10 hrs, Volume= Outflow 0.845 af, Atten= 0%, Lag= 0.5 min

Discarded = 0.04 cfs @ 6.65 hrs, Volume= 0.107 af 11.59 cfs @ 12.10 hrs, Volume= Primary = 0.738 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 44.18' @ 12.10 hrs Surf.Area= 1,672 sf Storage= 4,815 cf

Plug-Flow detention time= 96.7 min calculated for 0.844 af (96% of inflow) Center-of-Mass det. time= 72.8 min (860.9 - 788.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	39.50'	2,099 cf	29.92'W x 55.89'L x 5.50'H Field A
			9,196 cf Overall - 3,198 cf Embedded = 5,998 cf x 35.0% Voids
#2A	40.25'	3,198 cf	ADS_StormTech MC-3500 d +Capx 28 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			28 Chambers in 4 Rows
			Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf
		5,297 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	39.25'	24.0" Round Culvert L= 50.0' Ke= 0.500
	·		Inlet / Outlet Invert= 39.25' / 38.75' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 3.14 sf
#2	Device 1	43.67'	5.0' long x 4.00' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)
#3	Discarded	39.50'	1.020 in/hr Exfiltration over Surface area
#4	Device 1	42.42'	9.0" Vert. Orifice/Grate X 3 rows with 6.0" cc spacing C= 0.600

Discarded OutFlow Max=0.04 cfs @ 6.65 hrs HW=39.59' (Free Discharge) **T_3=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=11.51 cfs @ 12.10 hrs HW=44.17' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 11.51 cfs of 29.96 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Weir Controls 5.71 cfs @ 2.32 fps)
4=Orifice/Grate (Orifice Controls 5.80 cfs @ 4.37 fps)

-4=Orifice/Grate (Orifice Controls 5.80 cfs @ 4.37 fps)

Page 160

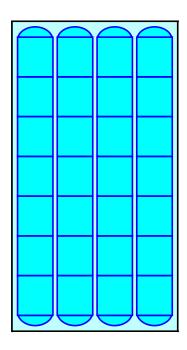
Pond 4P: UGS-1 - Chamber Wizard Field A

Chamber Model = ADS_StormTechMC-3500 d +Cap (ADS StormTech® MC-3500 d rev 03/14 with Cap volume)

Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf

77.0" Wide + 9.0" Spacing = 86.0" C-C Row Spacing

7 Chambers/Row x 7.17' Long +1.85' Cap Length x 2 = 53.89' Row Length +12.0" End Stone x 2 = 55.89' Base Length

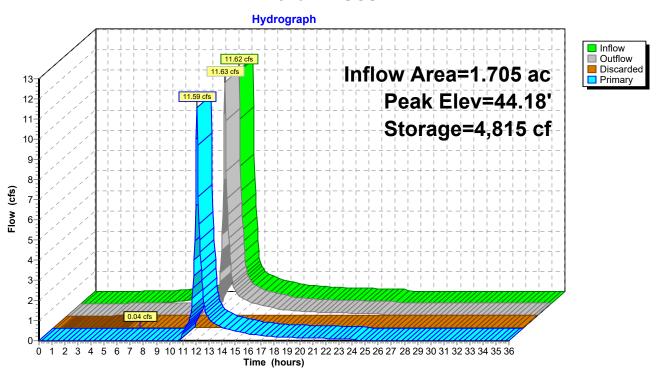

4 Rows x 77.0" Wide + 9.0" Spacing x 3 + 12.0" Side Stone x 2 = 29.92' Base Width 9.0" Base + 45.0" Chamber Height + 12.0" Cover = 5.50' Field Height

28 Chambers x 110.0 cf + 14.9 cf Cap Volume x 2 x 4 Rows = 3,197.9 cf Chamber Storage

9,196.2 cf Field - 3,197.9 cf Chambers = 5,998.4 cf Stone x 35.0% Voids = 2,099.4 cf Stone Storage

Chamber Storage + Stone Storage = 5,297.3 cf = 0.122 af Overall Storage Efficiency = 57.6% Overall System Size = 55.89' x 29.92' x 5.50'

28 Chambers 340.6 cy Field 222.2 cy Stone



Page 161

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Pond 4P: UGS-1

Page 162

Summary for Pond 5P: rain garden#1 cascading

Inflow Area = 0.725 ac, 65.66% Impervious, Inflow Depth = 6.38" for 100 yr event

Inflow = 5.10 cfs @ 12.09 hrs, Volume= 0.385 af

Outflow = 5.12 cfs @ 12.09 hrs, Volume= 0.381 af, Atten= 0%, Lag= 0.3 min

Primary = 0.01 cfs @ 12.09 hrs, Volume= 0.026 af Secondary = 5.10 cfs @ 12.09 hrs, Volume= 0.356 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 62.19' @ 12.09 hrs Surf.Area= 533 sf Storage= 650 cf

Flood Elev= 63.00' Surf.Area= 660 sf Storage= 1,132 cf

Plug-Flow detention time= 39.2 min calculated for 0.381 af (99% of inflow)

Center-of-Mass det. time= 33.4 min (823.1 - 789.8)

Volume	Invert	Avail.Storage	Storage Description
#1	58.50'	1,048 cf	Rain Garden Envelope (Prismatic)Listed below (Recalc)
			1,348 cf Overall - 300 cf Embedded = 1,048 cf
#2	58.50'	30 cf	crush stone (Prismatic)Listed below (Recalc) Inside #1
			75 cf Overall x 40.0% Voids
#3	59.00'	50 cf	Bio Media (Prismatic)Listed below (Recalc) Inside #1
			199 cf Overall x 25.0% Voids
#4	60.33'	5 cf	Mulch (Prismatic)Listed below (Recalc) Inside #1
			26 cf Overall x 20.0% Voids

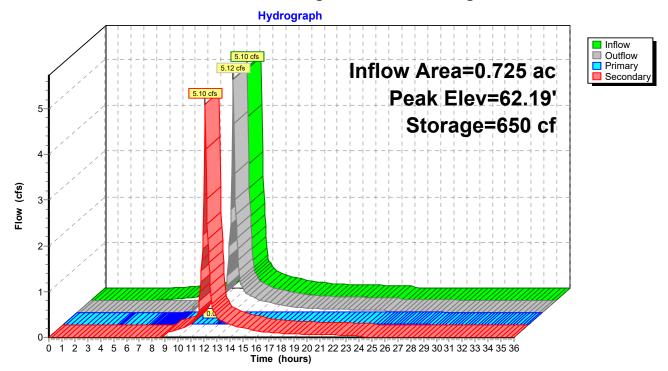
1,132 cf Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
58.50	150	0	0
60.50	150	300	300
61.00	236	97	397
62.00	503	370	766
63.00	660	582	1,348
- 1	Overf Aver	la contra de la contra del la contra de la contra de la contra del la contra del la contra de la contra de la contra del la cont	0
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
58.50	150	0	0
59.00	150	75	75
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
59.00	150	0	0
60.33	150	199	199
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
60.33	150	0	0
60.50	150	26	26

17211.00 Arlington HS - Proposed Conditions - NOI Re *ype III 24-hr 100 yr Rainfall=8.17*" Prepared by Samiotes Engineering Printed 5/28/2020 HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC Page 163

Device	Routing	Invert	Outlet Devices
#1	Device 3	58.50'	1.020 in/hr Exfiltration over Surface area
#2	Secondary	62.00'	25.0' long x 3.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.92 2.97 3.07 3.32
#3	Primary	58.50'	8.0" Round Culvert L= 20.0' Ke= 0.500
			Inlet / Outlet Invert= 58 50' / 58 40' S= 0 0050 '/' Cc= 0 900

n= 0.012, Flow Area= 0.35 sf


Primary OutFlow Max=0.01 cfs @ 12.09 hrs HW=62.19' TW=54.72' (Dynamic Tailwater)

3=Culvert (Passes 0.01 cfs of 3.08 cfs potential flow)

1=Exfiltration (Exfiltration Controls 0.01 cfs)

Secondary OutFlow Max=5.01 cfs @ 12.09 hrs HW=62.19' TW=54.72' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 5.01 cfs @ 1.06 fps)

Pond 5P: rain garden#1 cascading

Printed 5/28/2020

Page 164

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

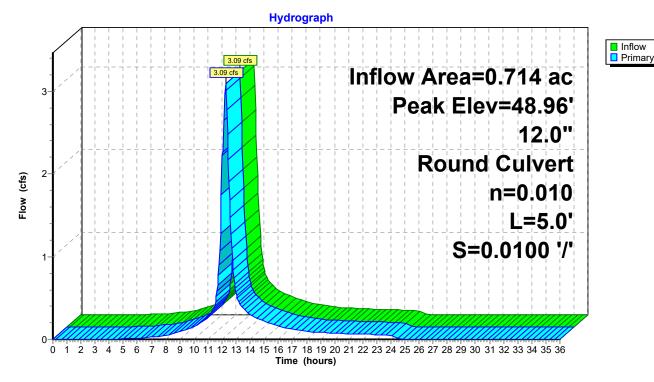
Summary for Pond BB 01 B: BB 01 B

Inflow Area = 0.714 ac, 1.93% Impervious, Inflow Depth = 6.13" for 100 yr event

Inflow = 3.09 cfs @ 12.25 hrs, Volume= 0.365 af

Outflow = 3.09 cfs @ 12.25 hrs, Volume= 0.365 af, Atten= 0%, Lag= 0.0 min

Primary = 3.09 cfs @ 12.25 hrs, Volume= 0.365 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 48.96' @ 12.25 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	47.63'	12.0" Round Culvert L= 5.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 47.63' / 47.58' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=3.08 cfs @ 12.25 hrs HW=48.95' TW=47.09' (Dynamic Tailwater) 1=Culvert (Barrel Controls 3.08 cfs @ 3.93 fps)

Pond BB 01 B: BB 01 B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

<u>Page 165</u>

Summary for Pond BB 01 S: BB 01 S

Inflow Area = 0.714 ac, 1.93% Impervious, Inflow Depth = 6.13" for 100 yr event

Inflow = 3.09 cfs @ 12.25 hrs, Volume= 0.365 af

Outflow = 0.78 cfs @ 12.83 hrs, Volume= 0.365 af, Atten= 75%, Lag= 34.5 min

Primary = 0.78 cfs @ 12.83 hrs, Volume= 0.365 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 47.45' @ 12.83 hrs Surf.Area= 0 sf Storage= 6,588 cf

Plug-Flow detention time= 175.1 min calculated for 0.364 af (100% of inflow)

Center-of-Mass det. time= 175.0 min (978.6 - 803.6)

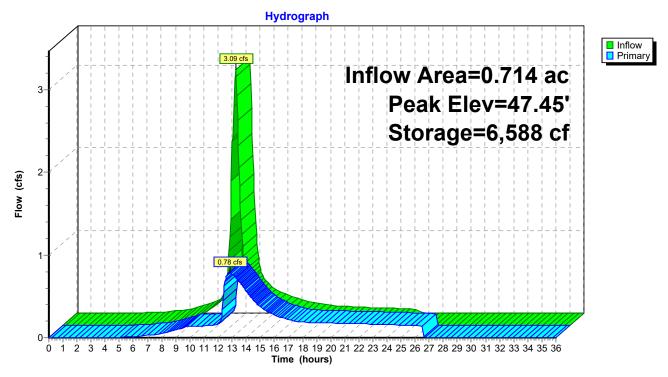
Volume	Inve	ert Avai	I.Storage	Storage Description
#1	45.6	55'	8,017 cf	Custom Stage DataListed below
- 14:.		l Ot	0	Ot
Elevation	on	Inc.Store	Cum	m.Store
(fee	et) (c	ubic-feet)	(cubi	bic-feet)
45.6	35	0		0
46.4	18	16		16
46.9	98	3,378		3,394
47.4	18	3,405		6,799
47.9	98	1,218		8,017
Device	Routing	In	vert Outl	ıtlet Devices
#1	Primary	45	.65' 2.5"	5" Vert. Orifice/Grate C= 0.600
#2	Primary	46	.98' 4.0"	"Vert. Orifice/Grate C= 0.600

Primary OutFlow Max=0.78 cfs @ 12.83 hrs HW=47.45' TW=45.72' (Dynamic Tailwater)

46.98' **5.0" Vert. Orifice/Grate** C= 0.600

-1=Orifice/Grate (Orifice Controls 0.21 cfs @ 6.27 fps)

#3


Primary

—2=Orifice/Grate (Orifice Controls 0.23 cfs @ 2.65 fps)

-3=Orifice/Grate (Orifice Controls 0.34 cfs @ 2.46 fps)

Page 166

Pond BB 01 S: BB 01 S

Printed 5/28/2020

Page 167

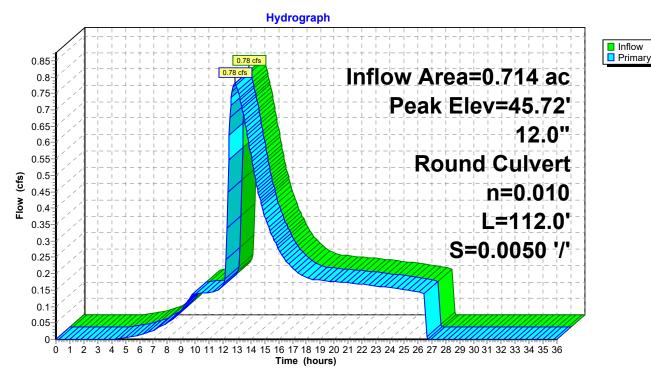
HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Summary for Pond BB 06 B: BB 06 B

Inflow Area = 0.714 ac, 1.93% Impervious, Inflow Depth = 6.13" for 100 yr event

Inflow = 0.78 cfs @ 12.83 hrs, Volume= 0.365 af

Outflow = 0.78 cfs @ 12.83 hrs, Volume= 0.365 af, Atten= 0%, Lag= 0.0 min


Primary = 0.78 cfs @ 12.83 hrs, Volume= 0.365 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 45.72' @ 12.83 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	45.25'	12.0" Round Culvert
			L= 112.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 45.25' / 44.69' S= 0.0050 '/' Cc= 0.900
			n= 0.010 Flow Area= 0.79 sf

Primary OutFlow Max=0.78 cfs @ 12.83 hrs HW=45.72' TW=44.98' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.78 cfs @ 3.15 fps)

Pond BB 06 B: BB 06 B

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 168

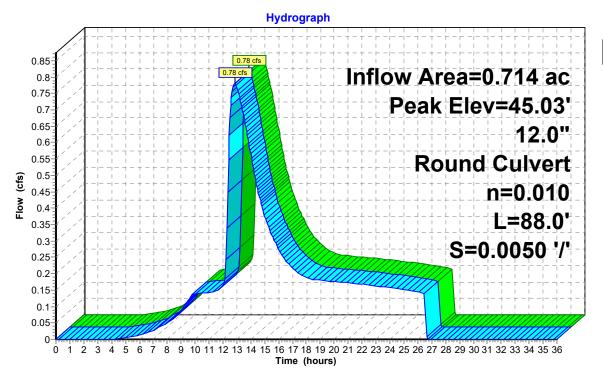
Inflow
□ Primary

Summary for Pond BB 07 B: BB 07 B

Inflow Area = 0.714 ac. 1.93% Impervious, Inflow Depth = 6.13" for 100 yr event

Inflow 0.78 cfs @ 12.83 hrs, Volume= 0.365 af

Outflow 0.78 cfs @ 12.83 hrs, Volume= 0.365 af, Atten= 0%, Lag= 0.0 min


Primary 0.78 cfs @ 12.83 hrs, Volume= 0.365 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 45.03' @ 13.31 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	44.50'	12.0" Round Culvert
			L= 88.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 44.50' / 44.06' S= 0.0050 '/' Cc= 0.900
			n= 0.010 Flow Area= 0.79 sf

Primary OutFlow Max=0.76 cfs @ 12.83 hrs HW=44.98' TW=44.46' (Dynamic Tailwater) 1=Culvert (Outlet Controls 0.76 cfs @ 2.99 fps)

Pond BB 07 B: BB 07 B

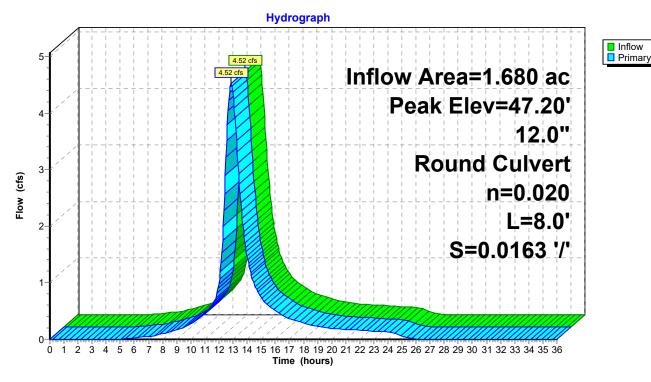
Page 169

Summary for Pond BB 11 B: BB 11 B

Inflow Area = 1.680 ac, 0.00% Impervious, Inflow Depth = 6.38" for 100 yr event

Inflow = 4.52 cfs @ 12.86 hrs, Volume= 0.893 af

Outflow = 4.52 cfs @ 12.86 hrs, Volume= 0.893 af, Atten= 0%, Lag= 0.0 min


Primary = 4.52 cfs @ 12.86 hrs, Volume= 0.893 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 47.20' @ 12.86 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	45.25'	12.0" Round Culvert L= 8.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 45.25' / 45.12' S= 0.0163'/' Cc= 0.900 n= 0.020 Flow Area= 0.79 sf

Primary OutFlow Max=4.51 cfs @ 12.86 hrs HW=47.19' TW=45.75' (Dynamic Tailwater) 1=Culvert (Barrel Controls 4.51 cfs @ 5.75 fps)

Pond BB 11 B: BB 11 B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 170

Summary for Pond BB 11 S: BB 11 S

Inflow Area = 1.680 ac, 0.00% Impervious, Inflow Depth = 6.38" for 100 yr event

Inflow = 4.52 cfs @ 12.86 hrs, Volume= 0.893 af

Outflow = 3.07 cfs @ 13.36 hrs, Volume= 0.893 af, Atten= 32%, Lag= 29.8 min

Primary = 3.07 cfs @ 13.36 hrs, Volume= 0.893 af

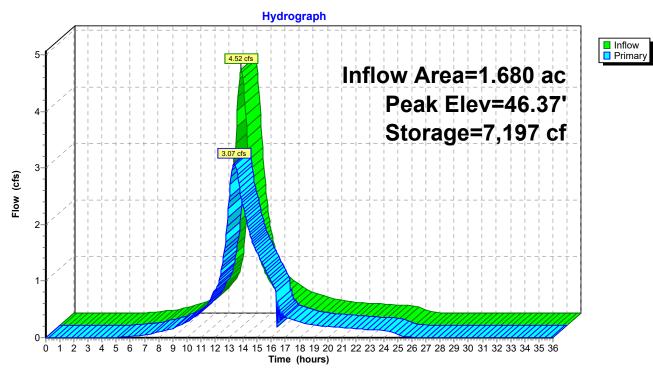
Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 46.37' @ 13.36 hrs Surf.Area= 0 sf Storage= 7,197 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 23.2 min (869.4 - 846.2)

Volume	Inve	ert Avai	l.Storage	Storage Description	
#1	44.1	4'	7,432 cf	Custom Stage DataListed below	
Elevatio		Inc.Store		m.Store pic-feet)	
44.1	14	0		0	
44.9	97	16		16	
45.4	! 7	3,131		3,147	
45.9	97	3,156		6,303	
46.4	17	1,129		7,432	
Device	Routing	ln	vert Outl	tlet Devices	
#1	Primary	44	.14' 2.5"	" Vert. Orifice/Grate C= 0.600	
#2	Primary	44	.47' 8.0"	" Vert. Orifice/Grate C= 0.600	
#3	Primary	45	.47' 6.0"	" Vert. Orifice/Grate C= 0.600	

Primary OutFlow Max=3.07 cfs @ 13.36 hrs HW=46.36' TW=44.70' (Dynamic Tailwater)


-1=Orifice/Grate (Orifice Controls 0.21 cfs @ 6.21 fps)

—2=Orifice/Grate (Orifice Controls 2.10 cfs @ 6.02 fps)

-3=Orifice/Grate (Orifice Controls 0.76 cfs @ 3.87 fps)

Page 171

Pond BB 11 S: BB 11 S

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

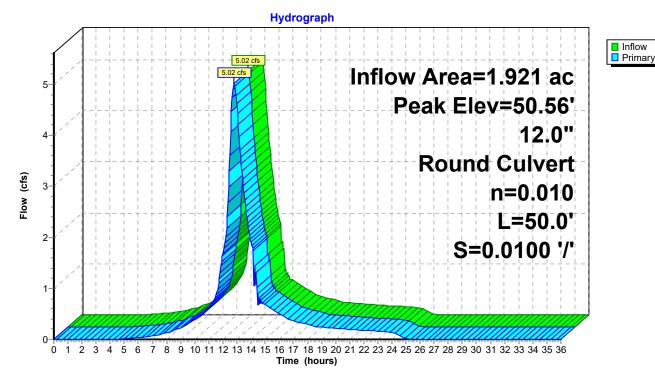
Page 172

Summary for Pond PR-4: SB 01 DMH

Inflow Area = 1.921 ac, 1.31% Impervious, Inflow Depth = 6.32" for 100 yr event

Inflow = 5.02 cfs @ 12.80 hrs, Volume= 1.013 af

Outflow = 5.02 cfs @ 12.80 hrs, Volume= 1.013 af, Atten= 0%, Lag= 0.0 min


Primary = 5.02 cfs @ 12.80 hrs, Volume= 1.013 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 50.56' @ 12.80 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	48.30'	12.0" Round Culvert L= 50.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 48.30' / 47.80' S= 0.0100'/' Cc= 0.900 n= 0.010 Flow Area= 0.79 sf

Primary OutFlow Max=5.01 cfs @ 12.80 hrs HW=50.56' TW=0.00' (Dynamic Tailwater) 1=Culvert (Inlet Controls 5.01 cfs @ 6.38 fps)

Pond PR-4: SB 01 DMH

Page 173

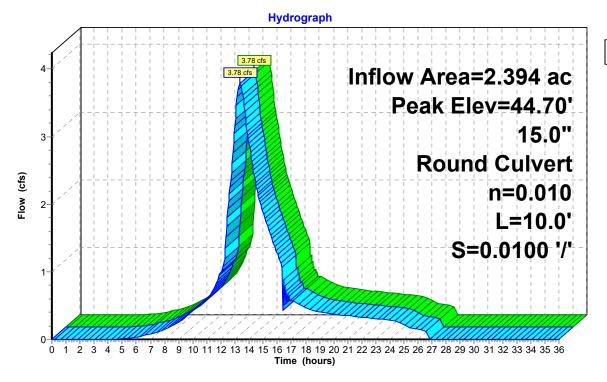
Inflow
□ Primary

Summary for Pond PR-5: DMH 1

Inflow Area = 2.394 ac, 0.58% Impervious, Inflow Depth = 6.30" for 100 yr event

Inflow = 3.78 cfs @ 13.34 hrs, Volume= 1.258 af

Outflow = 3.78 cfs @ 13.34 hrs, Volume= 1.258 af, Atten= 0%, Lag= 0.0 min


Primary = 3.78 cfs @ 13.34 hrs, Volume= 1.258 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 44.70' @ 13.34 hrs

Device Routing Invert Outlet Devices	
#1 Primary 43.50' 15.0" Round Culvert L= 10.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 43.50' / 43.40' S= 0.0100 '/' Cc= 0.900 n= 0.010 Flow Area= 1.23 sf	

Primary OutFlow Max=3.78 cfs @ 13.34 hrs HW=44.70' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 3.78 cfs @ 4.00 fps)

Pond PR-5: DMH 1

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 174

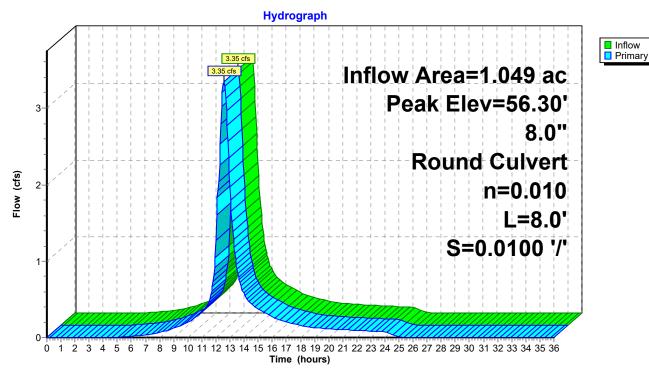
Summary for Pond SB 01 B: SB 01 B

Inflow Area = 1.049 ac, 2.41% Impervious, Inflow Depth = 6.28" for 100 yr event

Inflow = 3.35 cfs @ 12.55 hrs, Volume= 0.549 af

Outflow = 3.35 cfs @ 12.55 hrs, Volume= 0.549 af, Atten= 0%, Lag= 0.0 min

Primary = 3.35 cfs @ 12.55 hrs, Volume= 0.549 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Peak Elev= 56.30' @ 12.55 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	52.00'	8.0" Round Culvert L= 8.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 52.00' / 51.92' S= 0.0100 '/' Cc= 0.900 n= 0.010. Flow Area= 0.35 sf

Primary OutFlow Max=3.34 cfs @ 12.55 hrs HW=56.29' TW=52.07' (Dynamic Tailwater) 1=Culvert (Inlet Controls 3.34 cfs @ 9.58 fps)

Pond SB 01 B: SB 01 B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 175

Summary for Pond SB 01 S: SB 01 S

Inflow Area = 1.049 ac, 2.41% Impervious, Inflow Depth = 6.28" for 100 yr event

Inflow = 3.35 cfs @ 12.55 hrs, Volume= 0.549 af

Outflow = 2.73 cfs @ 12.81 hrs, Volume= 0.549 af, Atten= 18%, Lag= 15.2 min

Primary = 2.73 cfs @ 12.81 hrs, Volume= 0.549 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

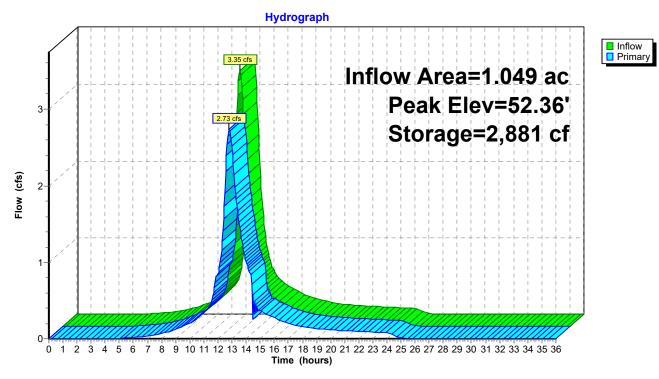
Peak Elev= 52.36' @ 12.81 hrs Surf.Area= 0 sf Storage= 2,881 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 9.1 min (832.0 - 823.0)

Volume	Inv	ert Avail.	.Storage	Storage Description
#1 50.64' 3,08		3,084 cf	Custom Stage DataListed below	
Elevatio		Inc.Store cubic-feet)		n.Store ic-feet)
50.6	64	0		0
51.4	17	16		16
51.9	97	2,170		2,186
52.4	17	898		3,084
Device	Routing	Inv	ert Outle	tlet Devices
#1	Primary	50.0	64' 4.0"	" Vert. Orifice/Grate C= 0.600
#2	Primary	50.9	97' 6.0"	" Vert. Orifice/Grate C= 0.600
#3	Primary	51.4	47' 8.0"	" Vert. Orifice/Grate C= 0.600

Primary OutFlow Max=2.73 cfs @ 12.81 hrs HW=52.36' TW=51.08' (Dynamic Tailwater)


—1=Orifice/Grate (Orifice Controls 0.47 cfs @ 5.44 fps)

—2=Orifice/Grate (Orifice Controls 1.01 cfs @ 5.13 fps)

-3=Orifice/Grate (Orifice Controls 1.25 cfs @ 3.58 fps)

Page 176

Pond SB 01 S: SB 01 S

Page 177

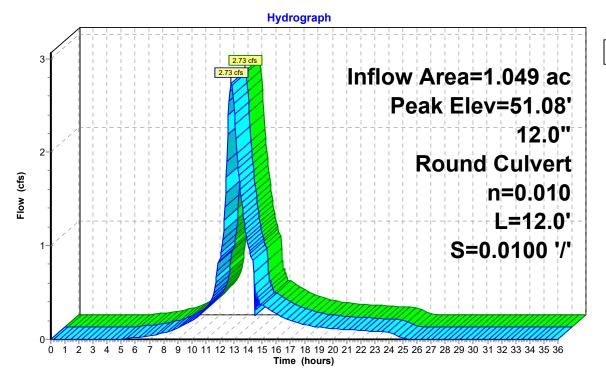
Inflow
□ Primary

Summary for Pond SB 02 B: SB 02 B

Inflow Area = 1.049 ac, 2.41% Impervious, Inflow Depth = 6.28" for 100 yr event

Inflow = 2.73 cfs @ 12.81 hrs, Volume= 0.549 af

Outflow = 2.73 cfs @ 12.81 hrs, Volume= 0.549 af, Atten= 0%, Lag= 0.0 min


Primary = 2.73 cfs @ 12.81 hrs, Volume= 0.549 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 51.08' @ 12.81 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	49.97'	12.0" Round Culvert L= 12.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 49.97' / 49.85' S= 0.0100'/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=2.73 cfs @ 12.81 hrs HW=51.08' TW=50.56' (Dynamic Tailwater) 1=Culvert (Barrel Controls 2.73 cfs @ 3.91 fps)

Pond SB 02 B: SB 02 B

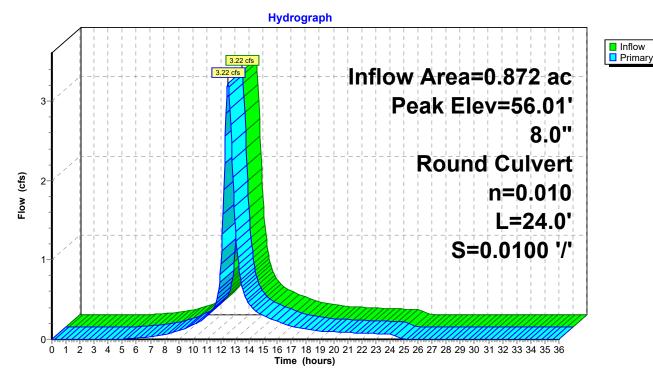
Page 178

Summary for Pond SB 11 B: SB 11 B

Inflow Area = 0.872 ac, 0.00% Impervious, Inflow Depth = 6.38" for 100 yr event

Inflow = 3.22 cfs @ 12.50 hrs, Volume= 0.464 af

Outflow = 3.22 cfs @ 12.50 hrs, Volume= 0.464 af, Atten= 0%, Lag= 0.0 min


Primary = 3.22 cfs @ 12.50 hrs, Volume= 0.464 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 56.01' @ 12.50 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	52.00'	8.0" Round Culvert
			L= 24.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 52.00' / 51.76' S= 0.0100 '/' Cc= 0.900
			n= 0.010 Flow Area= 0.35 sf

Primary OutFlow Max=3.22 cfs @ 12.50 hrs HW=56.01' TW=52.14' (Dynamic Tailwater) 1=Culvert (Inlet Controls 3.22 cfs @ 9.23 fps)

Pond SB 11 B: SB 11 B

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 179

Summary for Pond SB 11 S: SB 11 S

Inflow Area = 0.872 ac, 0.00% Impervious, Inflow Depth = 6.38" for 100 yr event

Inflow = 3.22 cfs @ 12.50 hrs, Volume= 0.464 af

Outflow = 2.28 cfs @ 12.78 hrs, Volume= 0.464 af, Atten= 29%, Lag= 16.8 min

Primary = 2.28 cfs @ 12.78 hrs, Volume= 0.464 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

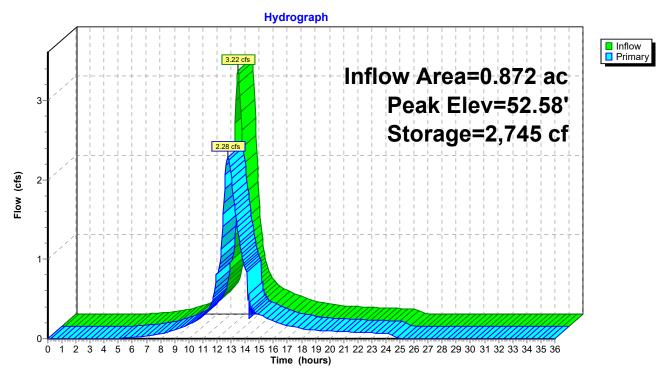
Peak Elev= 52.58' @ 12.80 hrs Surf.Area= 0 sf Storage= 2,745 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 9.0 min (827.9 - 818.9)

Volume	Inver	t Avail.Sto	rage Storag	e Description	
#1	50.84	' 2,89	92 cf Custo	m Stage DataListe	ed below
□ 14:.	1		O Ot		
Elevation	on i	nc.Store	Cum.Store		
(fee	et) (cu	bic-feet)	(cubic-feet)		
50.8	34	0	0		
51.6	67	16	16		
52.1	17	2,035	2,051		
52.6	67	841	2,892		
Device	Routing	Invert	Outlet Device	ces	
#1	Primary	50.84'	4.0" Vert. C	rifice/Grate C= (0.600
#2	Primary	51.17'	6.0" Vert. C	orifice/Grate C= 0	0.600
#3	Primary	51.67'	6.0" Vert. C	orifice/Grate C= 0	0.600

Primary OutFlow Max=2.28 cfs @ 12.78 hrs HW=52.58' TW=51.22' (Dynamic Tailwater)


1=Orifice/Grate (Orifice Controls 0.49 cfs @ 5.62 fps)

—2=Orifice/Grate (Orifice Controls 1.02 cfs @ 5.18 fps)

-3=Orifice/Grate (Orifice Controls 0.77 cfs @ 3.91 fps)

Page 180

Pond SB 11 S: SB 11 S

Printed 5/28/2020

Page 181

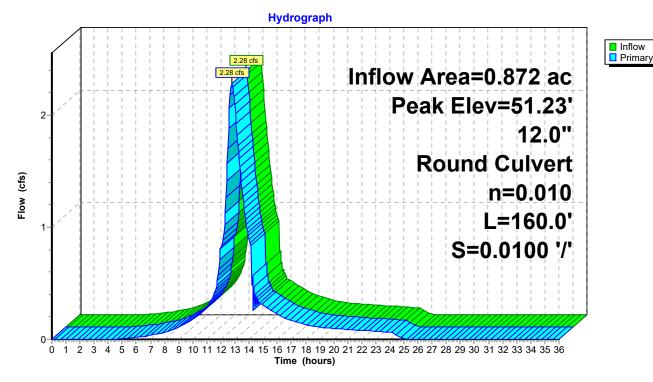
HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Summary for Pond SB 12 B: SB 12 B

Inflow Area = 0.872 ac, 0.00% Impervious, Inflow Depth = 6.38" for 100 yr event

Inflow = 2.28 cfs @ 12.78 hrs, Volume= 0.464 af

Outflow = 2.28 cfs @ 12.78 hrs, Volume= 0.464 af, Atten= 0%, Lag= 0.0 min


Primary = 2.28 cfs @ 12.78 hrs, Volume= 0.464 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 51.23' @ 12.83 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	50.17'	12.0" Round Culvert	
			L= 160.0' CPP, square edge headwall, Ke= 0.500	
			Inlet / Outlet Invert= 50.17' / 48.57' S= 0.0100 '/' Cc= 0.900	
			n= 0.010, Flow Area= 0.79 sf	

Primary OutFlow Max=2.22 cfs @ 12.78 hrs HW=51.22' TW=50.55' (Dynamic Tailwater) 1=Culvert (Outlet Controls 2.22 cfs @ 3.36 fps)

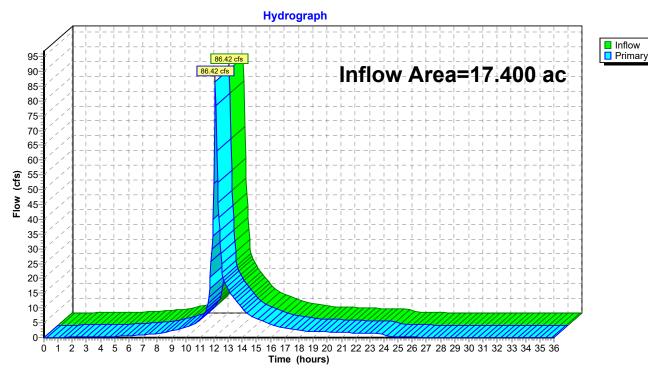
Pond SB 12 B: SB 12 B

Printed 5/28/2020

Page 182

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

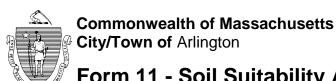
Summary for Link POA: POA


Inflow Area = 17.400 ac, 49.60% Impervious, Inflow Depth > 6.25" for 100 yr event

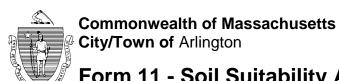
Inflow = 86.42 cfs @ 12.11 hrs, Volume= 9.057 af

Primary = 86.42 cfs @ 12.11 hrs, Volume= 9.057 af, Atten= 0%, Lag= 0.0 min

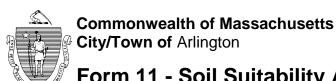
Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs


Link POA: POA

APPENDIX 3: Test Pit Logs Soils Report



A.	. Facility Information			
	Town of Arlington			
	Owner Name			
	869 Massachusetts Ave		53-2-4	
	Street Address		Map/Lot #	
	Arlington	MA	02476	
	City	State	Zip Code	
<u>В</u>	. Site Information			
1.	(Check one) New Construction Upgr	rade 🗌 Repair		
2.	Soil Survey Available? ⊠ Yes ☐ No	If yes:	USDA	656
		, 551	Source	Soil Map Unit
	Udorthents			
	Soil Name	Soil Limitations		
	Loamy alluvium and/or sandy glaciofluvial deposits	Urban Land		
	and/or loamy glaciolacustrine deposits	Landform		
3.	Surficial Geological Report Available? ✓ Yes No	If yes: 2018/Stone	Artificial Fill	
		Year Published	/Source Map Unit	
	Earth materials and manmade materials that have be	en artificially emplaced.		
	Description of Geologic Map Unit:			
1	Flood Rate Insurance Map Within a regulatory	floodway? \square Yes \boxtimes No	•	
+.	Flood Rate Insurance Map Within a regulatory	floodway? \square Yes \boxtimes No	O	
5.	Within a velocity zone? ☐ Yes ☐ No			
•				> 1/4
3.	Within a Mapped Wetland Area? ☐ Yes ☐ N	No If yes, Mass	GIS Wetland Data Layer:	N/A Wetland Type
7		1015/19	Pango: Aboyo Normal	Normal
٠.	\	Month/Day/ Year	Range: Above Normal	M Normal Delow Normal
3.				
٠.				



Deer	Observatio	n Hole Numb	er: TP-1	10/14/	19	11:00		Sunny,	50's			
•			Hole #	Date		Time		Weather		Latitude		Longitude:
1. Land	Use Lands	scaped area	ural field, vacant lot, e) to \	Grass Vegetation			None	es (e.g., cobbles,	atanaa hauldar	ro oto)	0-2% Slope (%)
	(c.g., v		irai neiu, vacani ioi, e	;(C.)	vegetation		,	Surface Storie	s (e.g., cobbles,	stories, boulder	S, etc.)	Slope (%)
De	scription of L	ocation:										
2. Soil I	Parent Materi	al: Loamy al	luvium			Outwash pla	ain	BS				
					L	_andform		Posi	tion on Landscap	e (SU, SH, BS,	FS, TS)	
Dista	nces from:	Oper	n Water Body <u>1</u>	100'+ feet	t	D	rainage W	ay <u>100'+</u> f	eet	We	tlands	100'+ feet
		ſ	Property Line 2	20'+ feet		Drinking	g Water W	'ell <u>100'+</u> f	eet	(Other	feet
4. Unsuit	able Materia	ls Present: 🗵	Yes ☐ No	If Yes:	Disturbed	Soil 🛛 I	Fill Material		Weathered/Fra	ctured Rock	☐ Bed	rock
_		. 🖂										
5. Grou	ndwater Obs	erved: X Yes	□ No		If yo	es: <u>90"</u> De	pth Weeping	from Pit	<u>g</u>	6" Depth Stand	ding Water	in Hole
						Soil Log	l					
	Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	oximorphic Fo	eatures		ragments Volume		Soil		
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Consistence (Moist)		Other
0-36	Fill											
36-48	Ab	Sandy Loam	10YR3/1						Granular	Friable		
		-										
48-96	C1	Sandy Loam	2.5Y 5/4				3%	3%	Massive	Friable		

NRCS Hydrologic Soil Group B; ESHGW=37.00

C. On-S	Site Revi	ew (minin	num of two	holes re	equired a	at every p	roposed p	orimary and	reserve disp	posal area)		
Deep (Observation	n Hole Numl	ber: Hole #	Da	te	Time	Wea	ather	Latitude		. <u>-</u>	 ongitude:
1. Land U	Jse: (e.g.	, woodland, agr	icultural field, va	cant lot, etc	.) Ve	egetation		Surface Stor	nes (e.g., cobbles,	stones, boulders, e	etc.)	Slope (%)
Descri	ption of Loca	ation:										
2. Soil Pa	arent Materia	al: ———					Landform			Position on Lands	cape (SU, SH, BS, FS, TS)
3. Distan	ces from:	•	r Body					feet		inds fee		
	s Present: [Yes 🗌	ty Line No If Yes: s □ No			☐ Fill Mate	_	☐ Weathered/	Fractured Rock	her fee		g Water in Hole
	T	T	1			So	il Log		T			
Depth (in)		Soil Texture	Soil Matrix:	Redox	cimorphic F	eatures		Fragments Volume	Soil Structure	Soil Consistence		Other
Dop ()	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	- Com Cinaciano	(Moist)		
Additio	nal Notes:											

D. Determination of High Groundwater Elevation

1. M	ethod Used: Depth observed standing water in observation Depth weeping from side of observation hole Depth to soil redoximorphic features (mottles) Depth to adjusted seasonal high groundwater (USGS methodology)		Obs. Hole #TP-1inches 90" inchesinchesinches	Ob	os. Hole # inches inches inches inches	
2. Est	·	Reading Date Sr	OWc	OW _{max}	OWr	Sh
E. D	epth of Pervious Material					
1. D	epth of Naturally Occurring Pervious Material					
a. sy	Does at least four feet of naturally occurring pe /stem?	rvious material exis	st in all areas observed	d throughout	the area proposed for	the soil absorption
	⊠ Yes □ No					
b. H	If yes, at what depth was it observed (exclude A	A and O	Upper boundary:	48" inches	Lower boundary:	96" inches
C.	If no, at what depth was impervious material ob	served?	Upper boundary:	inches	Lower boundary:	inches

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

Danie Scharlacker	10-15-19	
Signature of Soil Evaluator	Date	
David Scharlacken SE#14279	12/1/2021	
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License	
Name of Approving Authority Witness	Approving Authority	

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

Field Diagrams: Use this area for field diagrams:

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:25.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Middlesex County, Massachusetts Survey Area Data: Version 18, Sep 7, 2018 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Aug 10, 2014—Aug 25. 2014 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
602	Urban land		44.3	33.9%
626B	Merrimac-Urban land complex, 0 to 8 percent slopes	A	20.3	15.5%
629C	Canton-Charlton-Urban land complex, 3 to 15 percent slopes	А	18.5	14.1%
631C	Charlton-Urban land- Hollis complex, 3 to 15 percent slopes, rocky	A	17.4	13.3%
655	Udorthents, wet substratum		11.1	8.5%
656	Udorthents-Urban land complex		19.1	14.6%
Totals for Area of Inter	est		130.7	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

APPENDIX 4: Operations and Maintenance Plan

ARLINGTON HIGH SCHOOL CONSTRUCTION PERIOD POLLUTION PREVENTION PLAN AND EROSION CONTROL OPERATION AND MAINTENANCE PLAN MAY 2020

During The Construction Period the General Contractor shall be responsible for the following:

1. Frosion Control

Erosion control barriers will be placed along down-gradient portion of the site as indicated on the project plans. Additional erosion control barriers will be placed at the limit of work as needed and in any sensitive areas as work progresses.

A stockpile of additional erosion control barriers shall be kept on site at all times

2. Site Access

Site access, for construction equipment will be from Massachusetts Ave. and Mill Brook Drive via an existing access drive as shown on the phased Demolition and Soil Erosion Plans, and all construction entrances will be installed at the onset of the project.

3. Construction Staging

A construction staging area will be established by the Contractor.

4. Site Grading/Site Work

The site activities may only commence when the site is stable from erosion and all required control measures are in place and functional.

5. Slope Stabilization

All surfaces and slopes shall be checked at least once every 7 calendar days and within 24 hours of the occurrence of a storm event 0.25 inches or greater to see that vegetation is in good condition. Any rills or damage from erosion shall be repaired immediately to avoid further damage. If seeps develop on the slopes, the area will be evaluated to determine if the seep will cause an unstable condition and shall be stabilized immediately if necessary. Problems found during the inspections by the General Contractor shall be repaired promptly. Areas requiring re-vegetation shall be replanted immediately or stabilized in a manner acceptable to the Conservation Commission if it is outside of the growing season. Slopes and other exposed surfaces receiving vegetation will be maintained as necessary to support healthy vegetation. If stabilization is required during the non-growing season, straw mulch, or a commercially manufactured blanket must be employed to prevent erosion.

6. Permanent Stabilization

Disturbed portions of the site where construction activities permanently cease shall be stabilized with permanent seed no later than 14 days after the last construction activity. The permanent seed mix, fertilizer, and mulch shall be specified on the project plans. Permanent seeding shall occur in the Spring or Fall.

7. Drainage Structures (Catch Basins, Area Drains, Manholes, WQU's)

Arlington High School – Arlington, MA Operation and Maintenance Plan – 05/20 Page 2

All structures shall be inspected on a bi-weekly basis and/or after every rain storm and repairs made as necessary. Sediment shall be removed from the sump after the sediment has reached a maximum of one half the depth of the sump. The sediment shall be removed from the site and properly disposed of. Drainage structures/sumps shall be cleaned completely at the end of construction.

8. Dust and Sediment Control

Siltsacks:

Catch basin/Area drain filters shall be placed at all inlets to drainage structures as structures are installed and prior to pavement removal. Outlet protection work shall be constructed before runoff is allowed to enter the drainage system. Construction and location of catch basin filters shall be as indicated on the Drawings.

Straw Wattles:

Straw bales shall be installed as indicated on the Drawings.

Bales shall be placed in a row with ends tightly abutting the adjacent wattles. Each roll shall be securely anchored in place by 2 stakes or re-bars driven through the wattles. The first stake in each roll shall be angled toward the previously laid straw wattle to force them together.

Construction Entrance:

The area of the construction entrance should be cleared of all vegetation, roots, and other objectionable material. The filter fabric should be placed on the subgrade prior to the gravel placement. The gravel shall be placed to the specified dimensions depicted on the plans.

The Construction entrance shall be a minimum of 50-feet in length and 20-feet wide.

Dust Control:

A mechanical street sweeper shall be utilized to clean the existing paved areas on an as-needed basis.

For emergency control of dust apply water to affected areas. The source of supply and the method of application for water are the responsibility of the contractor.

Pollution Prevention Measures

- 1. Before, during, and after construction, functional erosion and sedimentation controls shall be implemented to prevent the silting of the wetland areas down-gradient of the site. Straw bales, crushed stone, temporary stabilization and other controls shall be properly maintained and are not to be removed until the site is permanently stabilized. Other controls shall be added as warranted during construction to protect environmentally-sensitive areas. Sufficient extra materials (e.g. straw bales and other control materials) shall be stored on site for emergencies.
- 2. Silt sacks and straw bale check dams shall be installed at all existing and proposed infiltration areas to protect from soils and sediment.
- **3.** Casting of excavated materials shall be stored away from wetland areas and sensitive land areas.
- **4.** Any stockpiling of loose materials shall be properly stabilized to prevent erosion and siltation. Preventative controls such as straw wattles, temporary seeding/mulching and jute covering shall be implemented to prevent such an occurrence.
- **5.** There shall be no flooding, ponding, or flood related damage caused by the project or surface run-off emanating from the project on lands of an abutter, nearby or down-gradient of the site.

Arlington High School – Arlington, MA Operation and Maintenance Plan – 05/20 Page 3

- **6.** There shall be no contaminant migration caused by the project to nearby and down-gradient properties, nearby aquifers, and nearby resource areas.
- 7. The contractor shall make sufficient provisions to control any unexpected drainage and erosion conditions that may arise during construction that may create damage on abutting properties. Said control measures are to be implemented at once.
- **8.** During construction flood prevention, erosion, and sedimentation controls shall be in place before the natural ground cover is disturbed. Said controls shall be in place prior to other construction work and shall be monitored and approved by the Contractor. They shall be properly maintained and are not to be removed until the site is stabilized.
- **9.** The Contractor shall designate a person or persons to inspect and supervise the erosion controls for the project. The Conservation Commission shall be notified as to the means to contact said individual or individuals on a 24-hour basis on all working and non-working days of the project. Said means of contact shall include at least 2 separate telephone number of said designated person or persons.
- **10.** There shall be periodic inspection of straw wattles, and other erosion controls by the Contractor's Designee to assure their continued effectiveness.
- **11.** The Contractor shall make adequate provisions for controlling erosion and sediment from activities that might yield water at high volumes with high suspended solid contents, such as dewatering excavations.
- 12. Street sweeping shall be used to keep public ways free and clear of sediment and dirt from the site activities.

Other Control Measures

<u>Waste Materials.</u> All trash and construction debris from the site will be hauled to an approved landfill or recycling facility. No construction waste material will be buried on the site. All personnel will receive instructions regarding the correct procedure for waste disposal. Notices describing these practices will be posted in the construction office. The site superintendent will be responsible for seeing that these procedures are followed. Employee waste and other loose materials will be collected so as to prevent the release of floatables during rainfall events.

<u>Hazardous Waste</u>. No Hazardous materials are expected to be encountered. The mandated State and Local permits for removal of such materials, if located, will be implemented when such materials are encountered.

After Construction, the owner shall be responsible for the following:

General Land Grading and Slopes Stabilization

All surfaces and slopes shall be checked bi-annually to see that vegetation is in good condition. Any rills or damage from erosion shall be repaired immediately to avoid further damage. If seeps develop on the slopes, the area will be evaluated to determine if the seep will cause an unstable condition and shall be stabilized immediately if necessary. Problems found during the inspections by the Owner shall be repaired promptly. Areas requiring re-vegetation shall be replanted immediately. Slopes and other exposed surfaces receiving vegetation will be maintained as necessary to support healthy vegetation.

Areas of steep slopes (2.5:1 or greater) shall be stabilized using jute mesh or a similar approved erosion blanket.

Erosion Controls

Erosion controls shall not be removed or dismantled without approval from the Engineer or Conservation Commission. Sediment deposits that are removed or left in place after the barriers have been dismantled shall be graded manually to conform to the existing topography and vegetated using seeding or other long term cover as approved in the Landscape Plan. Bare ground that cannot be permanently stabilized within 30 days shall be stabilized by temporary measures.

Street Sweeping (\$500 per sweeping)

It is proposed that the parking and drive areas be swept with a wet brush street sweeper on a semi-annual basis, with at least two sweepings per year. One sweep shall be done at the end of the winter season (prior to the heavy rains), and the other sweep at the end of autumn (prior to snowfall).

Stormwater Management System

Catch Basins, Area Drains, and Drain Manholes (\$500 per CB structure per inspection/cleaning):

The catch basins, drain manholes, WQU's, infiltration systems, and area drains shall be inspected semi-annually, and cleaned out when sumps are approximately one foot full. The use of "clam shells" for sediment removal shall not be allowed; a vacuum truck shall be the approved method of cleaning. Integrity and functionality of oil hoods shall also be checked at the time of the inspection.

Water Quality Unit (WQU) (\$1000 per structure per inspection/cleaning):

Water Quality Unit shall be as follows and per manufacturer's recommendations:

- Units should be inspected post-construction, prior to being put into service.
- Inspect every six months for the first year of operation to determine the oil and sediment accumulation rate. In subsequent years, inspections can be based on first-year observations
- Cleaning is required once the sediment depth reaches 15% of storage capacity, (generally taking one year or longer).
- Inspect the unit immediately after an oil, fuel or chemical spill.
- A licensed waste management company should remove captured petroleum waste products from any oil, chemical or fuel spills and dispose responsibly

Rain Garden (\$750 per cleaning):

Inspection and Maintenance of Rain Gardens shall be conducted per the Bioretention Maintenance Schedule provided below from the Massachusetts Stormwater Handbook:

Bioretention Mainten	Bioretention Maintenance Schedule											
Activity	Time of Year	Frequency										
Inspect & remove trash	Year round	Monthly										
Mulch	Spring	Annually										
Remove dead vegetation	Fall or Spring	Annually										
Replace dead vegetation	Spring	Annually										
Prune	Spring or Fall	Annually										
Replace entire media & all vegetation	Late Spring/early Summer	As needed*										

^{*} Paying careful attention to pretreatment and operation & maintenance can extend the life of the soil media Structural BMPs - Volume 2 | Chapter 2 page 27

Infiltration System (\$2,500 per cleaning; \$1,000 per inspection)

The proposed infiltration system shall be inspected semi-annually, and shall follow the suggested schedule for routine maintenance during the regular operation of the stormwater system:

Inlets and Outlets	Every 3 years	Obtain documentation that the inlets, outlets and vents have been
		cleaned and will function as intended.
	Spring and Fall	 Check inlet and outlets for clogging and remove any debris as required.
Stormwater Chambers	2 years after commis- sioning	 Inspect the interior of the stormwater management chambers through inspection port for deficiencies using CCTV or comparable technique.
		Obtain documentation that the stormwater management chambers and feed connectors will function as anticipated.
	9 years after commis- sioning every 9 years following	Clean stormwater management chambers and feed connectors of any debris.
		 Inspect the interior of the stormwater management structures for deficiencies using CCTV or comparable technique.
		 Obtain documentation that the stormwater management chambers and feed connectors have been cleaned and will function as intend- ed.
	45 years after com- missioning	Clean stormwater management chambers and feed connectors of any debris.
		Determine the remaining life expectancy of the stormwater management chambers and recommended schedule and actions to rehabilitate the stormwater management chambers as required.
		Inspect the interior of the stormwater management chambers for deficiencies using CCTV or comparable technique.
		Replace or restore the stormwater management chambers in accordance with the schedule determined at the 45-year inspection.
		Attain the appropriate approvals as required.
		Establish a new operation and maintenance schedule.
Surrounding Site	Monthly in 1 st year	Check for depressions in areas over and surrounding the stormwater management system.
	Spring and Fall	Check for depressions in areas over and surrounding the stormwater management system.
	Yearly	Confirm that no unauthorized modifications have been performed to the site.

Maintenance and Emergency Repairs

Any maintenance or emergency repairs to the system will be the responsibility of the Owner.

INSPECTION REPORT FORM FOR STORM WATER SYSTEM

Project: Arlington High School, Arlington, MA 869 Massachusetts Avenue, Arlington, MA 02476

INSPECTOR:		_DATE:	
Regular Inspection: □ Inspection after Rainfall: □		Amount of Rainfall:	_inches
ВМР	Functioning Correctly	Notes/Action Taken	
	Y/N		
Additional Observations:			
Action Required:			
		On or Refore	

APPENDIX 5: Calculations

NOAA Atlas 14, Volume 10, Version 3 Location name: Arlington, Massachusetts, USA* Latitude: 42.4182°, Longitude: -71.1617° Elevation: 49.76 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

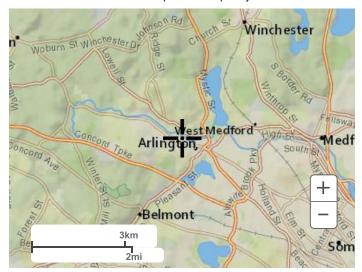
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

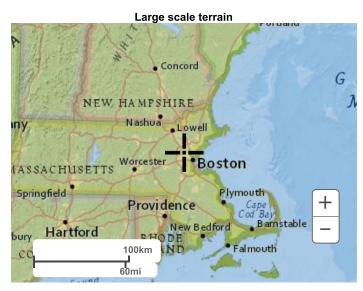
NOAA, National Weather Service, Silver Spring, Maryland

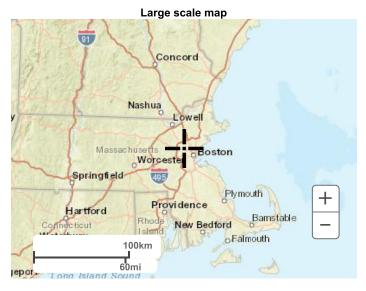
PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-	based po	int precip	itation fre	quency es	timates w	ith 90% (confiden	ce interv	als (in in	ches) ¹
Duration				Average	recurrence	interval (ye	ars)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.304 (0.236-0.386)	0.373 (0.289-0.474)	0.485 (0.376-0.619)	0.578 (0.445-0.742)	0.705 (0.526-0.953)	0.800 (0.586-1.11)	0.901 (0.644-1.30)	1.02 (0.687-1.50)	1.20 (0.779-1.84)	1.36 (0.858-2.11)
10-min	0.431 (0.335-0.547)	0.528 (0.410-0.671)	0.686 (0.531-0.876)	0.817 (0.629-1.05)	0.998 (0.746-1.35)	1.13 (0.830-1.57)	1.28 (0.913-1.85)	1.45 (0.974-2.13)	1.70 (1.10-2.60)	1.92 (1.22-2.99)
15-min	0.507 (0.394-0.644)	0.621 (0.482-0.790)	0.808 (0.625-1.03)	0.962 (0.740-1.24)	1.18 (0.877-1.59)	1.33 (0.976-1.85)	1.50 (1.07-2.17)	1.70 (1.15-2.51)	2.00 (1.30-3.06)	2.26 (1.43-3.52)
30-min	0.694 (0.539-0.881)	0.851 (0.661-1.08)	1.11 (0.858-1.41)	1.32 (1.02-1.70)	1.62 (1.21-2.19)	1.84 (1.35-2.55)	2.07 (1.48-3.00)	2.35 (1.58-3.47)	2.78 (1.80-4.25)	3.15 (1.99-4.91)
60-min	0.881 (0.685-1.12)	1.08 (0.840-1.38)	1.41 (1.09-1.80)	1.68 (1.30-2.16)	2.06 (1.54-2.79)	2.34 (1.72-3.25)	2.64 (1.89-3.83)	3.00 (2.02-4.42)	3.56 (2.31-5.44)	4.04 (2.56-6.31)
2-hr	1.15 (0.897-1.45)	1.41 (1.10-1.78)	1.84 (1.43-2.33)	2.19 (1.70-2.80)	2.69 (2.02-3.62)	3.05 (2.26-4.21)	3.44 (2.49-4.98)	3.94 (2.66-5.75)	4.71 (3.06-7.14)	5.39 (3.42-8.33)
3-hr	1.34 (1.05-1.68)	1.64 (1.29-2.06)	2.14 (1.67-2.70)	2.55 (1.99-3.24)	3.12 (2.36-4.19)	3.54 (2.63-4.88)	4.00 (2.91-5.78)	4.59 (3.10-6.66)	5.50 (3.58-8.28)	6.30 (4.01-9.68)
6-hr	1.73 (1.37-2.16)	2.12 (1.68-2.65)	2.76 (2.17-3.46)	3.29 (2.57-4.15)	4.02 (3.06-5.34)	4.55 (3.40-6.21)	5.14 (3.75-7.35)	5.88 (3.99-8.46)	7.04 (4.59-10.5)	8.05 (5.13-12.2)
12-hr	2.20 (1.76-2.73)	2.70 (2.15-3.35)	3.51 (2.78-4.37)	4.18 (3.29-5.23)	5.10 (3.90-6.73)	5.78 (4.34-7.81)	6.52 (4.78-9.22)	7.44 (5.07-10.6)	8.86 (5.81-13.1)	10.1 (6.46-15.2)
24-hr	2.64 (2.12-3.25)	3.28 (2.63-4.04)	4.31 (3.44-5.33)	5.17 (4.10-6.43)	6.35 (4.89-8.32)	7.22 (5.46-9.69)	8.17 (6.02-11.5)	9.36 (6.41-13.2)	11.2 (7.38-16.4)	12.8 (8.24-19.1)
2-day	3.01 (2.43-3.68)	3.80 (3.07-4.65)	5.10 (4.10-6.26)	6.17 (4.93-7.62)	7.65 8.7 (5.94-9.98) (6.66-1		9.93 (7.40-13.9)	11.5 (7.89-16.1)	14.0 (9.22-20.3)	16.2 (10.4-23.9)
3-day	3.30 (2.68-4.01)	4.15 (3.37-5.06)	5.55 (4.48-6.78)	6.71 (5.38-8.24)	8.30 (6.47-10.8)	9.46 (7.25-12.6)	10.8 (8.05-15.0)	12.5 (8.57-17.3)	15.2 (10.0-21.9)	17.6 (11.4-25.9)
4-day	3.57 (2.91-4.33)	4.45 (3.62-5.41)	5.90 (4.78-7.19)	7.09 (5.71-8.69)	8.74 (6.83-11.3)	9.94 (7.63-13.2)	11.3 (8.46-15.7)	13.0 (8.99-18.1)	15.9 (10.5-22.8)	18.4 (11.9-26.9)
7-day	4.33 (3.55-5.23)	5.25 (4.30-6.34)	6.75 (5.50-8.18)	8.00 (6.48-9.74)	9.71 (7.63-12.5)	11.0 (8.44-14.4)	12.4 (9.28-17.0)	14.2 (9.81-19.5)	17.1 (11.3-24.3)	19.6 (12.7-28.4)
10-day	5.03 (4.14-6.05)	5.98 (4.91-7.19)	7.52 (6.15-9.08)	8.80 (7.15-10.7)	10.6 (8.31-13.5)	11.9 (9.14-15.5)	13.3 (9.96-18.1)	15.1 (10.5-20.6)	17.9 (11.9-25.3)	20.4 (13.2-29.4)
20-day	20 day 7.03 8.06 9.74 11.1 13.1		13.1 (10.3-16.4)	14.5 (11.2-18.6)	16.0 (11.9-21.2)	17.8 (12.4-24.0)	20.3 (13.6-28.4)	22.4 (14.6-31.9)		
30-day	8.69 (7.23-10.3)	9.78 (8.13-11.6)	11.6 (9.58-13.8)	13.1 (10.7-15.7)	15.1 (11.9-18.8)	16.7 (12.8-21.1)	18.2 (13.5-23.8)	19.9 (14.0-26.8)	22.2 (14.9-30.9)	24.0 (15.7-34.1)
45-day	10.8 (9.01-12.8)	11.9 (9.97-14.1)	13.8 (11.5-16.5)	15.4 (12.7-18.4)	17.6 (13.9-21.7)	19.3 (14.9-24.2)	20.9 (15.5-27.0)	22.6 (15.9-30.1)	24.7 (16.6-34.0)	26.2 (17.1-36.9)
60-day	12.6 (10.5-14.8)	13.8 (11.5-16.3)	15.8 (13.1-18.7)	17.4 (14.4-20.7)	19.7 (15.6-24.1)	21.5 (16.6-26.7)	23.2 (17.1-29.6)	24.8 (17.5-32.9)	26.7 (18.0-36.7)	28.1 (18.4-39.4)


Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Large scale aerial

STORM	DRAIN C	OMPUTA	ATION SI	HEET												5/7/2020	
		"Branch" Se					:.)										
	SEGMENT	-	WATERS		RACTERI	STICS		PIPE CHAI	RACTERIS	STICS				VALUES	5		
			Design Fro	equency		<u>25-year</u>						Pipe D	esign [Depth	1.00 D		
No.	Start	End	Drain.	Runoff	Time	Rainfall	Q (min)	Pipe	Pipe	Pipe	Pipe	n	A	R	Q	Head	Velocity
			Area	Coeff.	of	Intens.	CiA	Diameter	Material	Length	Slope				(max)	above	
					Conc.			D								invert	
			acres		min	in/hr	cfs	in		ft			sf	ft		ft	fps
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
1	CB1	DMH1	0.123	0.95	6.0	5.90	0.70	12	HDPE	177	0.015	0.011	0.785	0.250	5.17	-	0.0 fps
2	CB2	DMH1	0.117	0.95	6.0	5.90	0.66	12	HDPE	6	0.010	0.011	0.785	0.250	4.22	-	3.6 fps
3	CB3	DMH12	0.443	0.58	6.0	5.90	1.54	12	HDPE	171	0.005	0.011	0.785	0.250	2.99	-	4.0 fps
4	CB4	RG2	0.372	0.95	6.0	5.90	2.31	12	HDPE	128	0.050	0.011	0.785	0.250	9.44	-	9.4 fps
5	CB5	DMH3	0.474	0.90	6.0	5.90	2.53	12	HDPE	183	0.050	0.010	0.785	0.250	10.38	-	11.5 fps
6	CB6	DMH11	0.305	0.80	6.0	5.90	1.45	12	HDPE	52	0.042	0.011	0.785	0.250	8.65	-	7.7 fps
7	CB7	DMH11	0.641	0.94	6.0	5.90	3.57	12	HDPE	60	0.009	0.011	0.785	0.250	4.01	-	5.1 fps
8	CB8	WQU1	0.200	0.95	6.0	5.90	1.13	12	HDPE	11	0.020	0.011	0.785	0.250	5.97	-	7.6 fps
9	CB9	WQU1	0.157	0.80	6.0	5.90	0.74	12	HDPE	76	0.010	0.011	0.785	0.250	4.22	-	5.4 fps
10	CB10	DMH3	0.502	0.86	6.0	5.90	2.57	12	HDPE	21	0.030	0.011	0.785	0.250	7.31	-	9.3 fps
11	CB11	DMH5	0.727	0.57	6.0	5.90	2.49	12	HDPE	47	0.010	0.011	0.785	0.250	4.22	-	5.4 fps
12	CB12	DMH7	1.070	0.70	6.0	5.90	4.43	12	HDPE	46	0.020	0.011	0.785	0.250	5.97	-	7.6 fps
13	CB13	MILL BRK	0.309	0.84	6.0	5.90	1.55	12	HDPE	45		0.011		0.250	7.31	-	9.3 fps
14	TD-2	DMH2	0.237	0.92	6.0	5.90	1.29	12	HDPE	107	0.010	0.011	0.785	0.250	4.22	-	5.4 fps
15	AD-3	DMH1	0.101	0.42	6.0	5.90	0.25	8	HDPE	48	0.005	0.011	0.349	0.167	1.01	-	2.9 fps
16	AD-5	DMH14	0.034	0.95	6.0	5.90	0.19	8	HDPE	20	0.100	0.011	0.349	0.167	4.53	-	13.0 fps
17	AD-6	DMH4	0.046	0.52	6.0	5.90	0.14	8	HDPE	5	0.010	0.011	0.349	0.167	1.43	-	4.1 fps
18	AD-7	DMH5	0.023	0.25	6.0	5.90	0.03	8	HDPE	12	0.010	0.011	0.349	0.167	1.43	-	4.1 fps
19	RD-1	DMH13	0.656	0.95	6.0	5.90	3.71	12	HDPE	150	0.010	0.011	0.785	0.250	4.22	-	5.4 fps
20	RD-2	DMH13	0.576	0.95	6.0	5.90	3.25	12	HDPE	14	0.025	0.011	0.785	0.250	6.68	-	8.5 fps
21	RD-3	DMH8	0.232	0.95	6.0	5.90	1.31	10	HDPE	20	0.030	0.011	0.545	0.208	4.50	-	8.2 fps
22	RD-4	DMH6	0.862	0.95	6.0	5.90	4.87	12	HDPE	52	0.020	0.011	0.785	0.250	5.97	-	7.6 fps
23	RD-5	DMH5	0.709	0.95	6.0	5.90	4.01	12	HDPE	49	0.010	0.011	0.785	0.250	4.22	-	5.4 fps
24	RD-6	DMH4	0.333	0.95	6.0	5.90	1.88	12	HDPE	8	0.010	0.011	0.785	0.250	4.22	-	5.4 fps
25	RD-7	DMH14	0.186	0.95	6.0	5.90	1.05	12	HDPE	7	0.010	0.011	0.785	0.250	4.22	-	5.4 fps
26	AD15	DMH3	0.307	0.22	6.0	5.90	0.40	6	PVC	106	0.015	0.010	0.196	0.125	0.90	-	4.6 fps
27	AD10	DMH8	0.132	0.71	6.0	5.90	0.56	6	PVC	200	0.016	0.010	0.196	0.125	0.93	-	4.7 fps

			ATION SHEET										
Section 2:			ments (Drain Basins, Manholes, etc.)	Inine out						/A.L.L.E.O			
	SEGMENT		WATERSHED CHARACTERISTICS	PIPE CHAI	RACTERIS	STICS				VALUES			
			Design Frequency <u>25-year</u>					-	esign [_	1.00 D		
No.	Start	End		Pipe	Pipe	Pipe	Pipe	n	A	R	Q	Head	Velocity
			Q (min)	Diameter	Material	Length	Slope				(max)	above	
												invert	
1	DMH1	DMH2	1.36	12	HDPE	46			0.785	0.250	4.22	-	4.6 fps
2	DMH2	RG1	2.65	12	HDPE	99			0.785	0.250	9.44	-	9.7 fps
3	DMH14	DMH3	1.24	12	HDPE	33			0.785	0.250	4.22	-	4.4 fps
4	DMH3	DMH4	10.18	24	HDPE	81		0.011		0.500	18.96	-	6.2 fps
5	DMH4	DMH5	12.20	24	HDPE	90		0.011		0.500	18.96	-	6.5 fps
6	DMH5	DMH6	21.10	30	HDPE	108			4.909	0.625	34.37	-	7.5 fps
7	DMH6	DMH7	25.97	30	HDPE	74			4.909	0.625	34.37	-	7.0 fps
8	DMH7	DMH8	30.39	30	HDPE	115			4.909	0.625	34.37	-	7.0 fps
9	DMH8	DMH9	32.27	30	HDPE	90			4.909	0.625	34.37	-	7.0 fps
10	DMH11	DMH10	5.02	15	HDPE	20	0.005	0.011	1.227	0.313	5.41	-	4.4 fps
11	DMH10	UGS1	6.57	18	HDPE	4	0.005	0.011	1.767	0.375	8.80	-	5.6 fps
12	WQU1	MILL BRK	1.87	12	HDPE	11	0.020	0.011	0.785	0.250	5.97	-	7.6 fps
13	DMH13	DMH15	6.96	12	HDPE	62	0.030	0.011	0.785	0.250	7.31	-	9.3 fps
14	DMH15	DMH12	6.96	12	HDPE	47	0.240	0.011	0.785	0.250	20.68	-	26.3 fps
15	DMH12	DMH16	6.96	12	HDPE	82	0.130	0.011	0.785	0.250	15.22	-	19.4 fps
16	DMH16	DMH17	6.96	15	HDPE	70	0.027	0.011	1.227	0.313	12.58	-	10.2 fps
17	DMH17	DMH18	6.96	15	HDPE	80	0.025	0.011	1.227	0.313	12.10	-	9.9 fps
													•

Prepared by Samiotes Engineering

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC Page 4

Stage-Area-Storage for Pond 5P: rain garden#1 cascading

(feet) (sq-ft) (cubic-feet) (feet) (sq-ft) (cubic-feet) 58.50 150 0 61.10 263 206 58.55 150 3 61.15 276 220 58.60 150 6 61.20 289 234 58.65 150 9 61.25 303 249 58.70 150 12 61.30 316 264 58.75 150 15 61.35 329 280 58.80 150 18 61.40 343 297 58.85 150 21 61.45 356 315 58.90 150 24 61.50 370 333 58.95 150 27 61.55 383 352 59.00 150 30 61.60 396 371 59.05 150 32 61.65 410 391 59.10 150 34 61.70	
58.60 150 6 61.20 289 234 58.65 150 9 61.25 303 249 58.70 150 12 61.30 316 264 58.75 150 15 61.35 329 280 58.80 150 18 61.40 343 297 58.85 150 21 61.45 356 315 58.90 150 24 61.50 370 333 58.95 150 27 61.55 383 352 59.00 150 30 61.60 396 371 59.05 150 32 61.65 410 391 59.10 150 34 61.70 423 412 59.15 150 36 61.75 436 434	
58.65 150 9 61.25 303 249 58.70 150 12 61.30 316 264 58.75 150 15 61.35 329 280 58.80 150 18 61.40 343 297 58.85 150 21 61.45 356 315 58.90 150 24 61.50 370 333 58.95 150 27 61.55 383 352 59.00 150 30 61.60 396 371 59.05 150 32 61.65 410 391 59.10 150 34 61.70 423 412 59.15 150 36 61.75 436 434	
58.65 150 9 61.25 303 249 58.70 150 12 61.30 316 264 58.75 150 15 61.35 329 280 58.80 150 18 61.40 343 297 58.85 150 21 61.45 356 315 58.90 150 24 61.50 370 333 58.95 150 27 61.55 383 352 59.00 150 30 61.60 396 371 59.05 150 32 61.65 410 391 59.10 150 34 61.70 423 412 59.15 150 36 61.75 436 434	
58.70 150 12 61.30 316 264 58.75 150 15 61.35 329 280 58.80 150 18 61.40 343 297 58.85 150 21 61.45 356 315 58.90 150 24 61.50 370 333 58.95 150 27 61.55 383 352 59.00 150 30 61.60 396 371 59.05 150 32 61.65 410 391 59.10 150 34 61.70 423 412 59.15 150 36 61.75 436 434	
58.75 150 15 61.35 329 280 58.80 150 18 61.40 343 297 58.85 150 21 61.45 356 315 58.90 150 24 61.50 370 333 58.95 150 27 61.55 383 352 59.00 150 30 61.60 396 371 59.05 150 32 61.65 410 391 59.10 150 34 61.70 423 412 59.15 150 36 61.75 436 434	
58.80 150 18 61.40 343 297 58.85 150 21 61.45 356 315 58.90 150 24 61.50 370 333 58.95 150 27 61.55 383 352 59.00 150 30 61.60 396 371 59.05 150 32 61.65 410 391 59.10 150 34 61.70 423 412 59.15 150 36 61.75 436 434	
58.85 150 21 61.45 356 315 58.90 150 24 61.50 370 333 58.95 150 27 61.55 383 352 59.00 150 30 61.60 396 371 59.05 150 32 61.65 410 391 59.10 150 34 61.70 423 412 59.15 150 36 61.75 436 434	
58.90 150 24 61.50 370 333 58.95 150 27 61.55 383 352 59.00 150 30 61.60 396 371 59.05 150 32 61.65 410 391 59.10 150 34 61.70 423 412 59.15 150 36 61.75 436 434	
58.95 150 27 61.55 383 352 59.00 150 30 61.60 396 371 59.05 150 32 61.65 410 391 59.10 150 34 61.70 423 412 59.15 150 36 61.75 436 434	
59.05 150 32 61.65 410 391 59.10 150 34 61.70 423 412 59.15 150 36 61.75 436 434	
59.10 150 34 61.70 423 412 59.15 150 36 61.75 436 434	
59.15 150 36 61.75 436 434	
59.20 150 38 61.80 450 456	
59.25 150 39 61.85 463 479	
59.30 150 41 61.90 476 502	
59.35 150 43 <u>61.95 490 526</u>	D 4 O E
59.40 150 45 62.00 503 551 STATIC STO	RAGE
59.45 150 47 62.05 511 576	
59.50 150 49 62.10 519 602	
59.55 150 51 62.15 527 628	
59.60 150 53 62.20 534 655	
59.65 150 54 62.25 542 682	
59.70 150 56 62.30 550 709	
59.75 150 58 62.35 558 737	
59.80 150 60 62.40 566 765	
59.85 150 62 62.45 574 793	
59.90 150 64 62.50 582 822 50.05 150 64 62.50 582 822	
59.95 150 66 62.55 589 851	
60.00 150 68 62.60 597 881	
60.05 150 69 62.65 605 911	
60.10 150 71 62.70 613 942	
60.15 150 73 62.75 621 972	
60.20 150 75 62.80 629 1,004	
60.25 150 77 62.85 636 1,035	
60.30 150 79 62.90 644 1,067 60.35 150 80 62.95 652 1,100	
60.40 150 82 63.00 660 1,132 60.45 150 83	
60.50 150 85	
60.55 159 93	
60.60 167 101	
60.65 176 109	
60.70 184 118	
60.75 193 128	
60.80 202 138	
60.85 210 148	
60.90 219 159	
60.95 227 170	
61.00 236 181	
61.05 249 194	

Prepared by Samiotes Engineering

Printed 5/28/2020

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC

Page 1

Stage-Area-Storage for Pond 2P: rain garden#2 cascading

(1891) (Elevation	Surface	Storage	Elevation	Surface	Storage	
\$1.05	(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
51 10 400 16 53.70 606 579 51 120 400 32 53.75 621 609 51 20 400 40 32 53.80 635 641 51 25 400 40 48 53.80 635 641 51 30 400 48 53.90 665 706 51 34 400 64 54.00 694 774 51 40 400 84 53.95 679 739 51 50 400 80 54.10 726 809 51 55 400 85 54.15 789 885 51 60 400 95 54.25 852 967 51 70 400 100 54.35 915 1.055 51 85 400 105 54.35 915 1.055 51 85 400 110 54.40 947 1,102 51 85 400 110 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
51.15 400 24 53.75 62.1 609 51.25 400 40 53.85 650 673 51.30 400 48 53.95 665 706 51.35 400 56 53.95 679 739 51.40 400 64 54.00 694 774 51.45 400 72 54.05 726 809 51.50 400 80 54.10 757 846 51.55 400 85 54.15 789 885 51.60 400 95 54.20 820 925 51.70 400 100 54.30 884 1,010 51.75 400 105 54.35 915 1,055 51.80 400 110 54.40 947 1,102 51.85 400 115 54.45 978 1,150 51.90 400 120 54.55 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
\$11.20							
\$1.25							
51:30 400 48 53.90 665 706 51:35 400 56 53.95 679 739 51:40 400 64 54.00 694 774 51:50 400 80 54.10 726 809 51:50 400 80 54.10 757 846 51:55 400 85 54.15 789 885 51:60 400 95 54.25 852 967 51:70 400 105 54.30 884 1,010 51:75 400 105 54.35 915 1,055 51:80 400 105 54.35 915 1,055 51:81 400 115 54.40 947 1,102 51:85 400 120 54.45 978 1,150 51:90 400 120 54.45 978 1,150 52:05 400 130 54.60 1,073 1,304 52:15 400 140 54.70 1,136 1,414 52:15 400 145 54.75 1,168 1,472 52:25 400 155 54.85 1,20	51.20			53.80			
61.35 400 56 53.95 679 739 61.40 400 64 54.00 684 774 51.45 400 72 54.05 726 809 51.50 400 80 54.10 757 846 51.55 400 85 54.15 789 885 51.60 400 90 54.20 820 925 51.70 400 100 54.30 884 1,010 51.75 400 105 54.35 915 1,055 51.70 400 105 54.35 915 1,055 51.85 400 115 54.40 947 1,102 51.85 400 125 54.45 978 1,150 51.90 400 120 54.45 978 1,150 51.95 400 135 54.66 1,104 1,358 52.15 400 145 54.75	51.25	400		53.85			
51.40 400 64 54.00 694 774 51.45 400 80 54.10 757 846 51.55 400 85 54.15 789 885 51.60 400 90 54.20 820 925 51.65 400 95 54.25 852 967 51.70 400 100 95 54.35 915 1,055 51.80 400 105 54.35 915 1,055 51.81 400 115 54.40 947 1,102 51.85 400 115 54.40 947 1,102 51.85 400 115 54.45 978 1,150 51.95 400 120 54.55 1,042 1,251 51.95 400 130 54.65 1,010 1200 51.95 400 135 54.65 1,010 1200 STATIC STORAGE 51.95 400 135 54.65 1,010 1200 STATIC STORAGE 52.10 400 140 54.75 1,136 1,414 52.15 400 155 54.85 1,20 1,331	51.30	400		53.90		706	
\$1.45	51.35	400	56	53.95	679	739	
\$\frac{5}{15.50}\$ 400 86 54.10 757 846 \\ \$51.55 400 85 54.15 789 855 \\ \$51.60 400 90 554.25 852 967 \\ \$51.65 400 100 554.30 884 1,010 \\ \$51.70 400 105 54.35 915 1,055 \\ \$51.80 400 115 54.40 947 1,102 \\ \$51.85 400 125 54.55 1,055 1,055 \\ \$51.90 400 125 54.55 1,010 1,200 \\ \$51.95 400 130 54.45 978 1,150 \\ \$52.05 400 130 54.65 1,073 1,304 \\ \$52.15 400 140 140 54.70 1,136 1,414 \\ \$52.15 400 155 54.85 1,231 1,592 \\ \$52.20 400 155 54.85 1,231 1,592 \\ \$52.20 400 155 54.85 1,231 1,592 \\ \$52.30 400 166 54.95 1,294 1,718 \\ \$52.45 400 175 \\ \$52.45 400 185 \\ \$52.45 400 185 \\ \$52.45 400 195 \\ \$52.85 400 185 \\ \$52.65 400 195 \\ \$52.80 400 205 \\ \$52.80 400 205 \\ \$52.80 400 215 \\ \$52.90 400 200 \\ \$52.75 400 205 \\ \$52.80 400 215 \\ \$52.90 400 215 \\ \$52.90 400 205 \\ \$52.85 400 185 \\ \$52.90 400 223 \\ \$53.00 488 360 \\ \$53.30 488 360 \\ \$53.30 583.5 503 385 \\ \$53.40 518 410 \\ \$53.50 547 463	51.40	400	64	54.00	694	774	
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	51.45	400	72	54.05	726	809	
51.60 400 90 54.20 820 925 51.65 400 95 54.25 852 967 51.70 400 100 54.30 884 1,010 51.80 400 110 54.40 947 1,102 51.85 400 115 54.40 947 1,102 51.95 400 120 54.45 978 1,150 52.05 400 125 54.50 1,010 1,200 STATIC STORAGE 52.05 400 130 54.60 1,073 1,304 1,251 251 320 400 140 54.70 1,136 1,414 444 <t< td=""><td>51.50</td><td>400</td><td></td><td>54.10</td><td>757</td><td>846</td><td></td></t<>	51.50	400		54.10	757	846	
\$ 1.65	51.55	400	85	54.15	789	885	
51.70	51.60	400	90	54.20	820	925	
51.75	51.65	400	95	54.25	852	967	
\$1.80	51.70	400	100	54.30	884	1,010	
\$1.80	51.75	400	105	54.35	915	1,055	
51.85	51.80	400	110	54.40	947		
51.95 400 125 54.55 1,042 1,251 52.00 400 130 54.60 1,073 1,304 52.05 400 135 54.65 1,105 1,358 52.10 400 140 54.70 1,136 1,414 52.15 400 145 54.75 1,168 1,472 52.20 400 150 54.80 1,201 1,531 52.25 400 155 54.85 1,231 1,592 52.30 400 160 54.90 1,263 1,654 52.35 400 165 54.95 1,294 1,718 52.40 400 170 55.00 1,326 1,784 52.45 400 175 52.00 400 180 52.55 400 185 52.60 400 190 52.75 400 205 52.85 400 215 52.80 400 21	51.85	400	115	54.45			
51.95 400 125 54.55 1,042 1,251 52.00 400 130 54.60 1,073 1,304 52.05 400 135 54.65 1,105 1,358 52.10 400 140 54.70 1,136 1,414 52.15 400 145 54.75 1,168 1,472 52.20 400 150 54.80 1,200 1,531 52.25 400 155 54.85 1,231 1,592 52.30 400 160 54.90 1,263 1,654 52.35 400 165 54.95 1,294 1,718 52.40 400 170 55.00 1,326 1,784 52.50 400 186 54.95 1,294 1,718 52.50 400 180 52.55 400 185 52.70 400 200 190 52.85 400 215 52.90 400 219 52.95 400 223 53.10 429	51.90	400	120	54.50	1,010	1,200	— STATIC STORAGE
52.00 400 130 54.60 1,073 1,304 52.05 400 135 54.65 1,105 1,358 52.10 400 140 54.70 1,136 1,414 52.15 400 145 54.75 1,168 1,472 52.20 400 150 54.80 1,200 1,531 52.25 400 155 54.85 1,231 1,592 52.30 400 160 54.90 1,263 1,654 52.35 400 165 54.95 1,294 1,718 52.40 400 170 55.00 1,326 1,784 52.45 400 175 55.00 1,326 1,784 52.50 400 180 55.00 1,326 1,784 52.50 400 180 55.00 1,326 1,784 52.70 400 195 55.00 1,326 1,784 52.80 400 219 52.85 400 219 52.95 400 223 53.00 400 223 53.10 429 268 53.15 444 290 53.25 474 <td></td> <td>400</td> <td></td> <td></td> <td></td> <td>1,251</td> <td></td>		400				1,251	
52.05 400 135 54.65 1,105 1,358 52.10 400 140 54.70 1,168 1,472 52.20 400 150 54.80 1,200 1,531 52.25 400 155 54.85 1,21 1,592 52.30 400 160 54.90 1,263 1,654 52.35 400 165 54.95 1,294 1,718 52.40 400 170 55.00 1,326 1,784 52.45 400 175 55.00 1,326 1,784 52.50 400 180 180 1,784 1,784 52.60 400 180 1,784 1,784 1,784 52.70 400 200 1,326 1,784 1,784 52.90 400 215 1,326 1,784 1,784 52.90 400 219 1,326 1,784 1,784 1,784 53.05	52.00	400	130	54.60	1,073		
52.10 400 140 54.70 1,136 1,414 52.15 400 145 54.75 1,168 1,472 52.20 400 150 54.80 1,200 1,531 52.25 400 155 54.85 1,231 1,592 52.30 400 160 54.90 1,263 1,654 52.35 400 165 54.95 1,294 1,718 52.40 400 170 55.00 1,326 1,784 52.45 400 175 1,326 1,784 52.50 400 185 55.00 1,326 1,784 52.60 400 185 52.60 400 195 52.70 400 205 52.75 400 205 52.80 400 215 52.90 400 215 52.90 400 223 53.00 400 223 53.10 429 268 53.15 444 290 53.25 474 336 53.30 488 360 53.40 518 410 53.45 532 436 53.50 547	52.05	400		54.65	1,105		
52.15 400 145 54.75 1,168 1,472 52.20 400 150 54.80 1,200 1,531 52.25 400 155 54.85 1,231 1,592 52.30 400 160 54.90 1,263 1,654 52.35 400 165 54.95 1,294 1,718 52.40 400 175 55.00 1,326 1,784 52.50 400 185 52.60 400 185 52.60 400 195 52.70 400 200 52.75 400 205 52.80 400 210 52.85 400 210 52.95 400 215 52.90 400 219 52.95 400 223 53.05 415 247 53.10 429 268 53.15 444 290 53.20 459 312 53.30 488 360 53.35 503 385 53.40 518 410 53.45 53.5 547 463							
52.20 400 150 54.80 1,200 1,531 52.25 400 155 54.85 1,231 1,592 52.30 400 160 54.90 1,263 1,654 52.35 400 165 54.95 1,294 1,718 52.40 400 170 55.00 1,326 1,784 52.45 400 175 55.00 1,326 1,784 52.50 400 180 180 1,784 52.55 400 180 1,784 52.65 400 195 1,326 1,784 52.70 400 190 1,326 1,784 52.80 400 195 1,326 1,784 52.81 400 195 1,326 1,784 52.80 400 195 1,326 1,784 52.80 400 210 1,326 1,784 52.85 400 215 1,326 1,784 52.80 400 215 1,326 1,784 52.90 400 219 1,326 1,784 53.10 429 268 1,326 1,326 53.15 444							
52.25 400 155 54.85 1,231 1,592 52.30 400 160 54.90 1,263 1,654 52.35 400 165 54.95 1,294 1,718 52.40 400 170 55.00 1,326 1,784 52.45 400 175 55.00 1,326 1,784 52.50 400 185 55.00 1,326 1,784 52.55 400 185 55.00 1,326 1,784 52.55 400 185 55.00 1,326 1,784 52.60 400 185 55.00 1,326 1,784 52.55 400 185 55.00 1,326 1,784 52.65 400 195 55.00 1,326 1,784 52.70 400 205 55.00 1,326 1,784 52.80 400 215 52.90 400 205 52.80 400 219 52.95 400 223 53.05 415 247 53.10 429 268 53.15 444 290 53.25 474 336 53.40 518 410							
52.30 400 160 54.90 1,263 1,654 52.35 400 165 54.95 1,294 1,718 52.40 400 170 55.00 1,326 1,784 52.45 400 175 55.00 1,326 1,784 52.50 400 180 55.00 1,326 1,784 52.55 400 185 55.00 1,326 1,784 52.50 400 185 55.00 1,326 1,784 52.50 400 185 55.00 1,326 1,784 52.60 400 195 55.00 1,326 1,784 52.70 400 195 55.00 1,326 1,784 52.70 400 195 55.00 1,326 1,784 52.75 400 205 52.75 400 205 52.85 400 215 52.90 400 223 53.05 415 247 53.10 429 268 53.15 444 290 53.25 474 336 53.40 518 410 53.45 532 436 53.50							
52.35 400 165 54.95 1,294 1,718 52.40 400 170 55.00 1,326 1,784 52.45 400 175 55.00 1,326 1,784 52.50 400 180 180 1,784 52.55 400 180 1,784 52.60 400 190 1,784 52.65 400 190 1,784 52.70 400 200 1,784 52.70 400 200 1,784 52.80 400 200 1,784 52.80 400 200 1,784 52.80 400 200 1,784 52.80 400 200 1,784 52.80 400 200 1,784 52.80 400 219 1,784 52.90 400 219 1,784 53.00 400 219 1,784 53.10 429 268 53.15 444 290 53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45		400					
52.40 400 170 55.00 1,326 1,784 52.45 400 175 55.00 1,326 1,784 52.50 400 180 185 52.55 400 185 52.60 400 190 190 52.65 400 205 52.70 400 205 52.80 400 210 52.85 400 215 52.90 400 219 52.95 400 223 53.00 400 227 53.05 415 247 53.10 429 268 53.15 444 290 53.20 459 312 53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463		400	165	54.95			
52.45 400 175 52.50 400 180 52.55 400 185 52.60 400 190 52.65 400 195 52.70 400 200 52.75 400 205 52.80 400 210 52.85 400 215 52.90 400 219 52.95 400 223 53.00 400 227 53.10 429 268 53.15 444 290 53.20 459 312 53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463							
52.50 400 180 52.55 400 185 52.60 400 190 52.65 400 195 52.70 400 200 52.75 400 205 52.80 400 210 52.85 400 215 52.90 400 219 52.95 400 223 53.00 400 227 53.10 429 268 53.15 444 290 53.20 459 312 53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463	52.45	400	175		·	·	
52.55 400 185 52.60 400 190 52.65 400 195 52.70 400 200 52.75 400 205 52.80 400 210 52.85 400 215 52.90 400 223 53.00 400 227 53.05 415 247 53.10 429 268 53.15 444 290 53.20 459 312 53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463	52.50	400	180				
52.65 400 195 52.70 400 200 52.75 400 205 52.80 400 210 52.85 400 215 52.90 400 219 52.95 400 223 53.00 400 227 53.05 415 247 53.10 429 268 53.15 444 290 53.20 459 312 53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463	52.55	400	185				
52.70 400 200 52.75 400 205 52.80 400 210 52.85 400 215 52.90 400 219 52.95 400 223 53.00 400 227 53.10 429 268 53.15 444 290 53.20 459 312 53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463	52.60	400	190				
52.75 400 205 52.80 400 210 52.85 400 215 52.90 400 219 52.95 400 223 53.00 400 227 53.05 415 247 53.10 429 268 53.15 444 290 53.20 459 312 53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463	52.65	400	195				
52.80 400 210 52.85 400 215 52.90 400 219 52.95 400 223 53.00 400 227 53.05 415 247 53.10 429 268 53.15 444 290 53.20 459 312 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463	52.70	400	200				
52.85 400 215 52.90 400 219 52.95 400 223 53.00 400 227 53.05 415 247 53.10 429 268 53.15 444 290 53.20 459 312 53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463	52.75	400	205				
52.90 400 219 52.95 400 223 53.00 400 227 53.05 415 247 53.10 429 268 53.15 444 290 53.20 459 312 53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463	52.80	400	210				
52.95 400 223 53.00 400 227 53.05 415 247 53.10 429 268 53.15 444 290 53.20 459 312 53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463	52.85	400	215				
53.00 400 227 53.05 415 247 53.10 429 268 53.15 444 290 53.20 459 312 53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463	52.90	400	219				
53.05 415 247 53.10 429 268 53.15 444 290 53.20 459 312 53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463	52.95	400	223				
53.10 429 268 53.15 444 290 53.20 459 312 53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463	53.00	400	227				
53.15 444 290 53.20 459 312 53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463	53.05	415	247				
53.20 459 312 53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463	53.10	429	268				
53.25 474 336 53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463	53.15	444	290				
53.30 488 360 53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463							
53.35 503 385 53.40 518 410 53.45 532 436 53.50 547 463							
53.40 518 410 53.45 532 436 53.50 547 463	53.30						
53.45 532 436 53.50 547 463							
53.50 547 463							
53.55 562 491							
	53.55	562	491				

HydroCAD® 10.00-24 s/n 03575 © 2018 HydroCAD Software Solutions LLC Page 2

Stage-Area-Storage for Pond 3P: rain garden#3 cascading

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	
46.00	600	0	48.60	814	764	
46.05	600	12	48.65	832	805	
46.10	600	24	48.70	850	847	
46.15	600	36	48.75	868	890	
46.20	600	48	48.80	886	934	
46.25	600	60	48.85	903	979	
46.30	600	72	48.90	921	1,024	
46.35	600	84	48.95	939	1,071	
46.40	600	96	49.00	957	1,118	
46.45	600	108	49.05	978	1,167	
46.50	600	120	49.10	999	1,216	
46.55	600	127	49.15	1,019	1,267	
46.60	600	135	49.20	1,040	1,318	
46.65	600	142	49.25	1,061	1,371	
46.70	600	150	49.30	1,082	1,424	
46.75	600	158	49.35	1,103	1,479	
46.80	600	165	49.40	1,123	1,534	
46.85	600	173	49.45	1,144	1,591	
46.90	600	180	49.50	1,165	1,649	
46.95	600	188	49.55	1,186	1,708	
47.00	600	195	49.60	1,207	1,767	
47.05	600	202	49.65	1,227	1,828	
47.10	600	210	49.70	1,248	1,890	
47.15	600	217	49.75	1,269	1,953	
47.20	600	225	49.80	1,290	2,017	
47.25	600	233	49.85	1,311	2,082	
47.30	600	240	49.90	1,331	2,148	
47.35	600	248	49.95	1,352	2,215	— STATIC STORAGE
47.40	600	255	50.00	1,373	2,283	= STATIC STORAGE
47.45	600	263	50.05	1,405	2,353	
47.50	600	270	50.10	1,437	2,424	
47.55 47.60	600	277	50.15	1,470	2,497	
47.60 47.65	600	285	50.20	1,502	2,571	
47.65 47.70	600	292	50.25	1,534	2,647	
47.70 47.75	600	300	50.30	1,566	2,724	
47.75 47.80	600 600	308	50.35	1,598	2,803	
47.80 47.85	600	315 322	50.40 50.45	1,631	2,884	
47.85 47.00	600	328	50.45	1,663 1,695	2,966	
47.90 47.95	600	320 334	50.50	1,695	3,050	
47.95 48.00	600	340				
48.05	618	370 370				
48.10	636	402				
48.15	654	434				
48.20	671	467				
48.25	689	501				
48.30	707	536				
48.35	707 725	572				
48.40	743	608				
48.45	743 761	646				
48.50	779	685				
48.55	796	724				

Page 3

Stage-Area-Storage for Pond 4P: UGS-1

		_			
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
39.50	1,672	0	44.70	1,672	5,122
39.60	1,672	59	44.80	1,672	5,180
39.70	1,672	117	44.90	1,672	5,239
39.80	1,672	176	45.00	1,672	5,297
39.90	1,672	234	45.10	1,672	5,297
40.00	1,672	293	45.20	1,672	5,297
40.10	1,672	351	45.30	1,672	5,297
40.20	1,672	410	45.40	1,672	5,297
40.30	1,672	508	45.50	1,672	5,297
40.40	1,672	645	45.60	1,672	5,297
40.50	1,672	783	45.70	1,672	5,297
40.60	1,672	919	45.80	1,672	5,297
40.70	1,672	1,055	45.90	1,672	5,297
40.80	1,672	1,190	46.00	1,672	5,297
40.90	1,672	1,325	46.10	1,672	5,297
41.00	1,672	1,459	46.20	1,672	5,297
41.10	1,672	1,592	46.30	1,672	5,297
41.20	1,672	1,724	46.40	1,672	5,297
41.30	1,672	1,855	46.50	1,672	5,297
41.40	1,672	1,986	46.60	1,672	5,297
41.50	1,672	2,116	46.70	1,672	5,297
41.60	1,672	2,244	46.80	1,672	5,297
41.70	1,672	2,372	46.90	1,672	5,297
41.80	1,672	2,498	47.00	1,672	5,297
41.90	1,672	2,623	47.10	1,672	5,297
42.00	1,672	2,747	47.20	1,672	5,297
42.10 42.20	1,672	2,870	47.30	1,672	5,297
42.20 42.30	1,672 1,672	2,991 3,110	47.40 47.50	1,672 1,672	5,297 5,297
42.40	1,672	3,228	47.60	1,672	5,297
42.50	1,672	3,344	47.00	1,072	0,201
42.60	1,672	3,458			_
42.70	1,672	3,570	├── ST <i>I</i>	ATIC STORAG	GE
42.80	1,672	3,680			
42.90	1,672	3,788			
43.00	1,672	3,893			
43.10	1,672	3,995			
43.20	1,672	4,094			
43.30	1,672	4,190			
43.40	1,672	4,282			
43.50	1,672	4,369			
43.60	1,672	4,449			
43.70	1,672	4,522			
43.80	1,672	4,588			
43.90	1,672	4,652			
44.00	1,672	4,712			
44.10	1,672	4,771			
44.20	1,672	4,829			
44.30	1,672	4,888			
44.40	1,672	4,946			
44.50	1,672	5,005			
44.60	1,672	5,063			

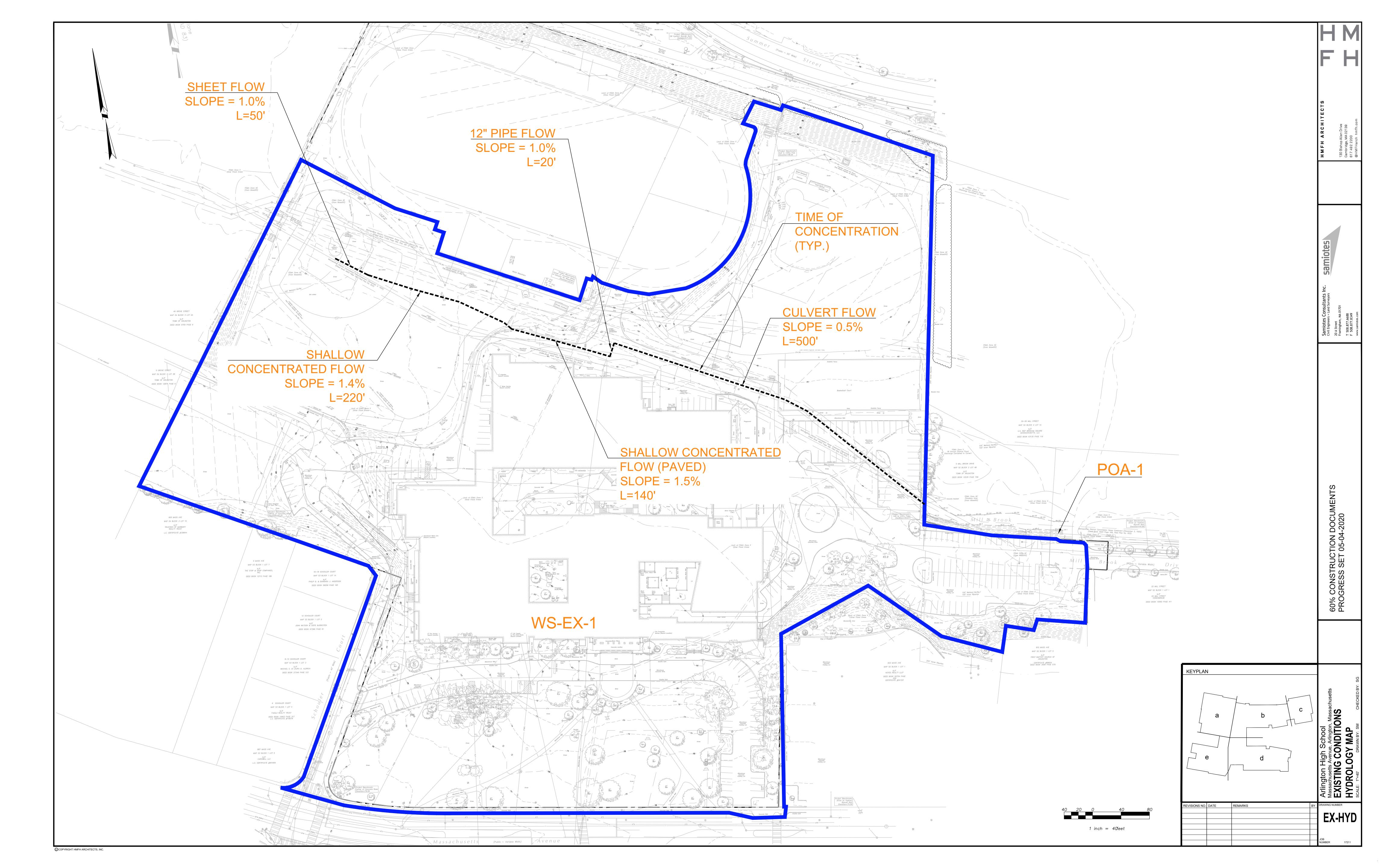
ARLINGTON HIGH SCHOOL CULVERT RELOCATION

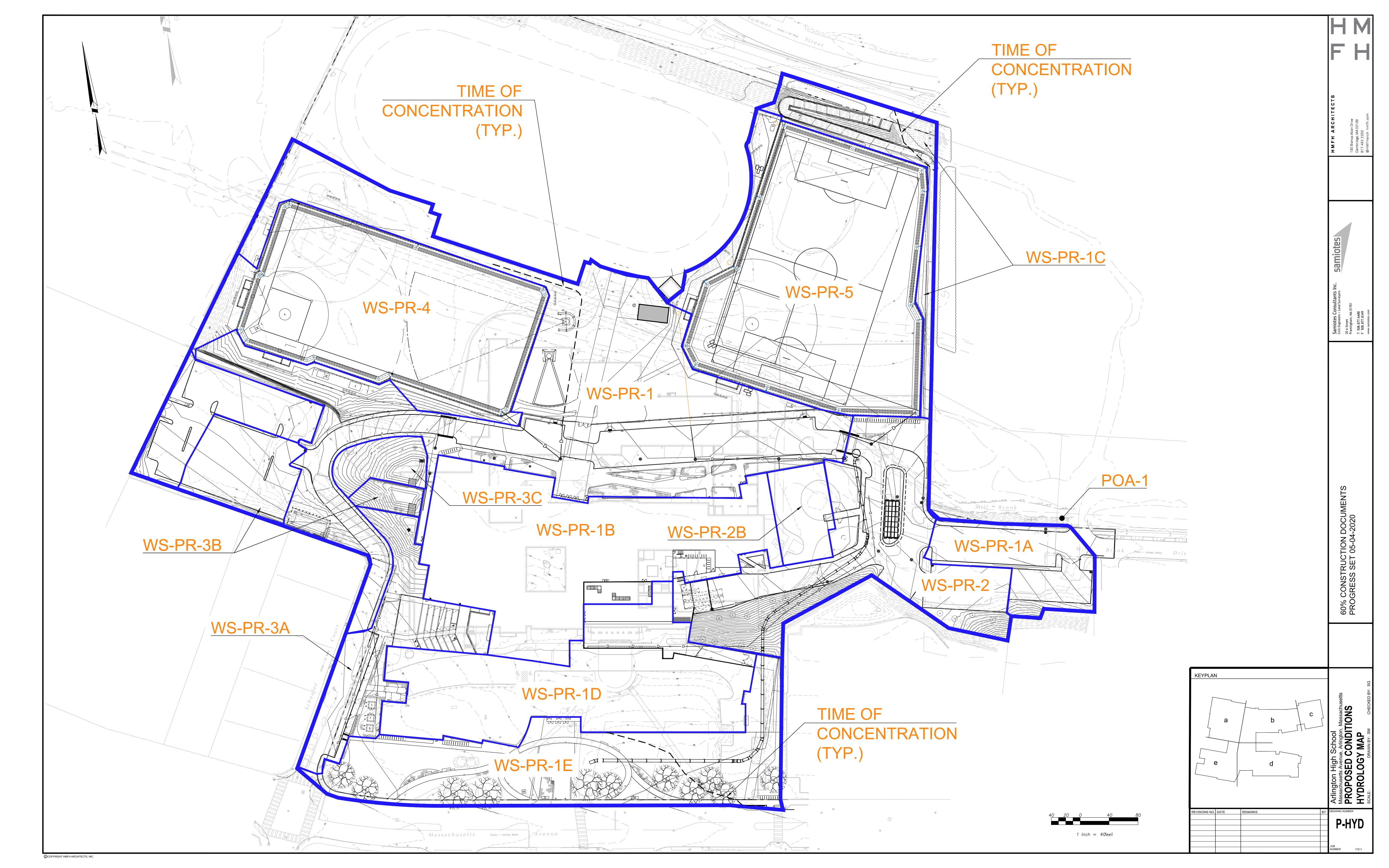
Existing Culvert:

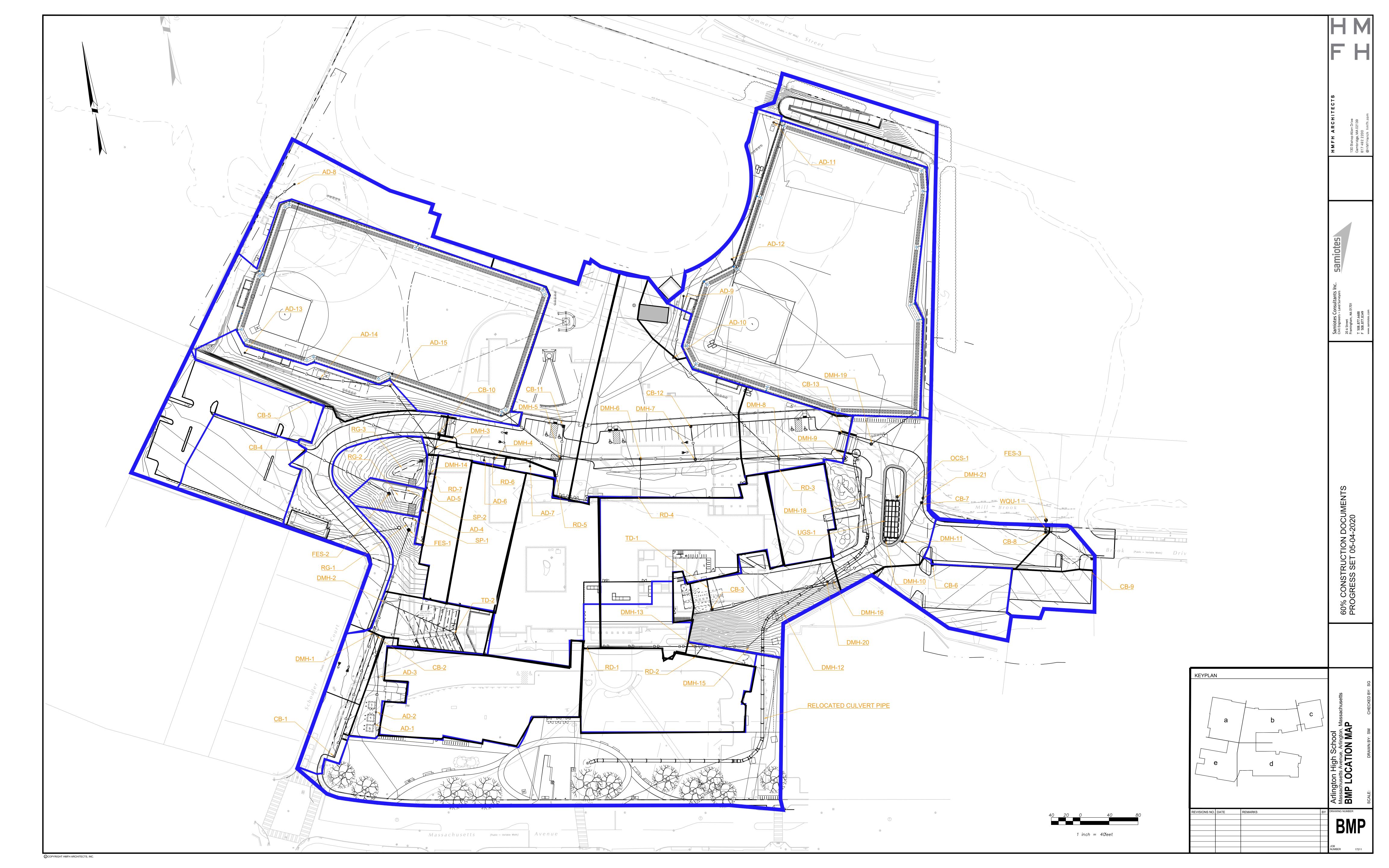
Brook culvert. This culvert carries a large watershed from South of the project site which measures 4,626,374 sf (106.20 Ac). Historically this culvert has been shown In the existing condition there is a large culvert, consisting of a 36" reinforced concrete pipe (RCP), that flows under the existing building and discharges to the Mill to be undersized and has caused flooding and foloor buckling within the basement of the high school and will be relocated and improved under post construction conditions while keeping the flow rates equal to the existing flow rates so that the stormwater doesn't impact areas downstream.

Results/Summary

Through the use of the rational method to anticpate pipe discharge rates, both the existing and proposed culvert were modeled to show flows for the 25 year storm


The watershed that contributes to the culvert is large and holds approximately 40.36 acres, as shown in the chart entitled WATERSHED DRAINAGE CALCULATIONS


		WATE	RSHE	ED DRA	NATERSHED DRAINAGE CALCULATIONS	CAL	CULAT	SNOL				
		IMPERVIOUS						_				
LOCATION		AREA			OTHER			SUM		_	Q	
FROM	TO	A (Ac)	С	CA	A (Ac) C CA	C	CA	CA	Tc	Tc (in/hr)	IxCA	DESIGN
Watersh												PERIOD
pə	Culvert	40.36	0.9	36.32	65.85	0.3	19.76	56.08	11.6	6.0	336.47	0.9 36.32 65.85 0.3 19.76 56.08 11.6 6.0 336.47 25-YEAR


As shown in Table 1, the post development flows are similar to the pre-development flows so that the new culvert will not have an adverse effect to downstream areas.

				_			ļ		£					_	1	1
	ļ	Ţ		‡			‡		‡		_	_	٦			l
	Ţ	ţ		<u>↓</u>			<u>↓</u>		<u>↓</u>		<u> </u>		<u>↓</u>	Ţ	↓	↓
	36 RCP 0.005 0.013 47.16	RCP 0.160 0.013 266.79		36 RCP 0.052 0.013 152.10	77.21		78.64		47.16		47.16	DI 0.033 0.010 336.64	0.075 0.010 237.46	DI 0.033 0.010 156.31	77.55	36 RCP 0.005 0.013 47.16
	0.013	0.013		0.013			0.013					0.010	0.010	0.010	0.010	0.013
	0.005	0.160		0.052	RCP 0.013 0.013		RCP 0.014 0.013		RCP 0.005 0.013		RCP 0.005 0.013	0.033	0.075	0.033	DI 0.008 0.010	0.005
	RCP	RCP		RCP	RCP		RCP		RCP		RCP		IO			RCP
		36			36		36		36		36	48	36	36	36	
	336.47	336.47		340.94	340.94		345.29		349.24		336.47	336.47	336.47	336.47	336.47	336.47
	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9		0.9	0.9	0.9	6.0	0.9	6.0
	11.6	11.6	11.6	11.6	11.6	11.6	11.6	11.6	11.6		11.6	11.6	11.6	11.6	11.6	11.6
	65.85 0.3 19.76 56.08 11.6	65.85 0.3 19.76 56.08 11.6	1.07 0.3 0.32 0.74 11.6	66.92 0.3 20.08 56.82 11.6	66.92 0.3 20.08 56.82 11.6	0.74 0.3 0.22 0.73	67.66 0.3 20.30 57.55 11.6	0.05 0.66	67.84 0.3 20.35 58.21		65.85 0.3 19.76 56.08 11.6	65.85 0.3 19.76 56.08 11.6	65.85 0.3 19.76 56.08 11.6	65.85 0.3 19.76 56.08 11.6	65.85 0.3 19.76 56.08 11.6	65.85 0.3 19.76 56.08 11.6
	19.76	19.76	0.32	20.08	20.08	0.22	20.30	0.05	20.35		19.76	19.76	19.76	19.76	19.76	19.76
	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	<u>_</u>	0.3	0.3	0.3	0.3	0.3	0.3
	65.85	65.85	1.07	66.92	66.92	0.74	99.79	0.18 0.3	67.84	l Option	65.85	65.85	65.85	65.85	65.85	65.85
	36.32	36.32	0.42	36.75	36.75	0.50	37.25	09.0	37.85	lendec	36.32	0.9 36.32	36.32	36.32	0.9 36.32	36.32
	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	<u>-D</u>	6.0	6.0	6.0	6.0	6.0	0.9
Ь	40.36 0.9	40.36 0.9 36.32	0.47	40.83 0.9 36.75	40.83 0.9 36.75	0.56	41.39 0.9	29.0	42.06 0.9 37.85	/ 36" CI	40.36 0.9 36.32	40.36	40.36	40.36	40.36	40.36 0.9 36.32
Existing Culvert 36" RCP	Pipe Bend	Ex. MH 1	Site Area 1 0.47 0.9 0.42	Ex. MH 2	Ex. MH 3	Site Area 2 0.56 0.9 0.50	Ex. MH 4	Site Area 3 0.67	Ex. culvert	Proposed Culvert - 48" / 36" CLDI Blended	DS-1	ACC PT 1	ACC PT 2	ACC PT 3	DS-5	Ex. culvert
Existing Cu	Ex. MH	Pipe Bend		Ex. MH 1	Ex. MH 2		Ex. MH 3		Ex. MH 4	Proposed C	Ex. MH	DS-1	ACC PT 1	ACC PT 2	ACC PT 3	DS-2

APPENDIX 6: Sketches

